American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Nanomaterials. 2019, 7(1), 39-45
DOI: 10.12691/ajn-7-1-5
Open AccessArticle

Sol-gel Preparation of Different Crystalline Phases of TiO2 Nanoparticles for Photocatalytic Degradation of Methylene Blue in Aqueous Solution

Siti Lailatul N. Zulmajdi1, Nur Izzah I. Zamri1, Abdul Hanif Mahadi2, Mohd Yameany H. Rosli3, Fairuzeta Ja’afar1, Hartini M. Yasin1, Eny Kusrini4, Jonathan Hobley1, 5 and Anwar Usman1,

1Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam

2Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Negara Brunei Darussalam

3Physical & Geological Science Department, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Negara Brunei Darussalam

4Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia

5Current Address; OndaLabs, Mabalacat, Clark Freeport, Angeles, Pampanga, Philippines

Pub. Date: September 09, 2019

Cite this paper:
Siti Lailatul N. Zulmajdi, Nur Izzah I. Zamri, Abdul Hanif Mahadi, Mohd Yameany H. Rosli, Fairuzeta Ja’afar, Hartini M. Yasin, Eny Kusrini, Jonathan Hobley and Anwar Usman. Sol-gel Preparation of Different Crystalline Phases of TiO2 Nanoparticles for Photocatalytic Degradation of Methylene Blue in Aqueous Solution. American Journal of Nanomaterials. 2019; 7(1):39-45. doi: 10.12691/ajn-7-1-5


This paper describes the photocatalytic degradation of methylene blue (MB) in aqueous solution in the presence of TiO2 nanoparticles (NPs) in different compositions of anatase and rutile phases under UV light irradiation. The different compositions of crystalline phases of TiO2 NPs were synthesized using sol-gel method at the same temperature for various calcination times. The TiO2 NPs were subjected to crystal phase, vibrational, size, and morphological characterizations. The photocatalytic degradation of MB revealed that anatase TiO2 NPs have a superior catalytic activity in the front of rutile phase. This finding further suggested that low charge resistance and low electron-hole recombination probability lead to the acceleration of the OH• formation on the surface of anatase TiO2 NPs.

photocatalysis; titania; sol-gel; calcination time; methylene blue

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Peleka, E.N. and Matis, K.A., “Water separation processes and sustainability,” Ind. Eng. Chem. Res. 50, 421-430, 2011.
[2]  Tayeb, A.M. and Hussein, D.S., “Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue,” Am. J. Nanomater. 3, 57-63, 2015.
[3]  Ma, B., Xue, W., Hu, C., Liu, H., Qu, J. and Li, L., “Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment,” Chem. Eng. J. 359, 159-167, 2019.
[4]  Tang, S.K., Teng, T.T., Alkarkhi, A.F.M. and Li, Z., “Sonocatalytic degradation of rhodamine B in aqueous solution in the presence of TiO2 coated activated carbon,” APCBEE Proc. 1, 110-115, 2012.
[5]  Hisaindee, S., Meetani, M.A. and Rauf, M.A., “Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms,” Trends Anal. Chem. 49, 31-44, 2013.
[6]  Zaidi, N.A.H.M., Lim, L.B.L. and Usman, A., “Enhancing adsorption of malachite green dye using base-modified Artocarpus odoratissimus leaves as adsorbents,” Environ. Technol. Innovation 13, 211-223, 2019.
[7]  Kusrini, E., Wicaksono, W., Gunawan, C., Daud, N.Z.A. and Usman, A., “Kinetics, mechanism, and thermodynamics of lanthanum adsorption on pectin extracted from durian rind,” J. Environ. Chem. Eng. 6, 6580-6588, 2018.
[8]  Rubin, B.S. and Soto, A.M., “Bisphenol A: Perinatal exposure and body weight,” Molec. Cellular Endocrinol. 304, 55-62, 2009.
[9]  Hadibarata, T., Tachibana, S. and Askari, M., “Identification of metabolites from phenanthrene oxidation by phenoloxidases and dioxygenases of Polyporus sp. S133,” J. Microbiol. Biotechnol. 21, 299-304, 2011.
[10]  Ollis, D.F. and Al-Ekabi, H. (Eds.), “Photocatalytic Purification and Treatment of Water and Air,” Elsevier, Amsterdam, 1993.
[11]  Chakrabarti, S. and Dutta, B.K., “Photocatalytic degradation of model textile dyes in wastewater using ZnO as a semiconductor catalyst,” J. Hazard. Mater. 112, 269-278, 2004.
[12]  Behnajady M.A. and Eskandarloo, H., “Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity,” Chem. Eng. J. 228, 1207-1213, 2013.
[13]  Jeni, J. and Kanmani, S., “Solar nanophotocatalytic decolorisation of reactive dyes using titanium dioxide,” Iran. J. Environ. Health. Sci. Eng. 8, 15-24, 2011.
[14]  Ratnawati, R., Gunlazuardi, J. and Slamet, S., “Development of titania nanotube arrays: The roles of water content and annealing atmosphere,” Mater. Chem. Phys. 160, 111-118, 2015.
[15]  Khataee, A.R. and Kasiri, M.B., “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes,” J. Mol. Catal. A Chem. 328, 8-26, 2010.
[16]  Zulmajdi, S.L.N., Ajak, S.N.F.H., Hobley, J., Duraman, N., Harunsani, M.H., Yasin, H.M., Nur, M. and Usman, A., “Kinetics of photocatalytic degradation of methylene blue in aqueous dispersions of TiO2 nanoparticles under UV-LED irradiation,” Am. J. Nanomater. 5, 1-6, 2017.
[17]  Dariani, R.S., Esmaeili, A., Mortezaali, A. and Dehghanpour, S., “Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles,” Optik 127, 7143-7154, 2016.
[18]  Prasannalakshmi, P. and Shanmugam, N., “Phase-dependant photochemistry of TiO2 nanoparticles in the degradation of organic dye methylene blue under solar light irradiation,” Appl. Phys. A 123, 586, 2017.
[19]  Padovini, D.S.S., Magdalena, A.G., Capeli, R.G., Longo, E., Dalmaschio, C.J., Chiquito, A.J. and Pontes, F. M., “Synthesis and characterization of ZrO2@SiO2 core-shell nanostructure as nanocatalyst: Application for environmental remediation of rhodamine B dye aqueous solution,” Mater. Chem. Phys. 233, 1-8, 2019.
[20]  Wu, Y., Zhao, J., Li, Y. and Lu, K., “Preparation and freezing behavior of TiO2 nanoparticle suspensions,” Ceram. Int. 42, 15597-15602, 2016.
[21]  Saeed, K., Khan, I., Gul, T. and Sadiq, M., “Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts,” Appl. Water Sci. 7, 3841-3848, 2017.
[22]  Pandey, A., Kalal, S., Ameta, C., Ameta, R., Kumar, S. and Punjabi, P.B., “Synthesis, characterization and application of naïve and nano-sized titanium dioxide as a photocatalyst for degradation of methylene blue,” J. Saudi Chem. Soc. 19, 528-536, 2015.
[23]  Cesnovar, A., Paunović, P., Grozdanov, A., Makreski, P. and Fidančevska, E., “Preparation of nano-crystalline TiO2 by sol-gel method using titanium tetraisopropoxide,” Adv. Nat. Sci.: Theory & Appl. 1, 133-142, 2012.
[24]  Sakurai K. and Mizusawa, M., “X-ray diffraction imaging of anatase and rutile,” Anal. Chem. 82, 3519-3522, 2010.
[25]  Kannadasan, N., Shanmugam, N., Cholan, S., Sathishkumar, K., Viruthagiri, G. and Poonguzhali, R., “The effect of Ce4+ incorporation on structural, morphological and photocatalytic characters of ZnO nanoparticles,” Mater. Charact. 97, 37-46, 2014.
[26]  Monshi, A., Foroughi, M.R. and Monshi, M.R., “Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD,” World J. Nano Sci. Eng. 2, 154-160 2012.
[27]  Jo, W.-K. and Kim, J.-T., “Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds,” J. Hazard. Mater. 164, 360-366, 2009.
[28]  Nolan, N.T., Seery, M.K. and Pillai, S.C., “Spectroscopic investigation of the anatase-to-rutile transformation of sol−gel-synthesized TiO2 photocatalysts,” J. Phys. Chem. 113, 16151-16157, 2009.
[29]  Reyes–Coronado, D., Rodriguez–Gattorno, G., Espinosa–Pesqueira M.E., Cab, C., de Coss, R. and Oskam G., “Phase–pure TiO2 nanoparticles: anatase, brookite, and rutile,” Nanotechnology 19, 145605-145614, 2008.
[30]  Salehi, M., Hashemipour, H. and Mirzaee, M., “Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder,” Am. J. Environ. Eng. 2, 1-7, 2012.
[31]  Andronic, L., Andrasi, D., Enesca, A., Visa, M. and Duta, A. “The influence of titanium dioxide phase composition on dyes photocatalysis,” J. Sol-Gel Sci. Technol. 58, 201–208, 2011.
[32]  Liu, L., Zhao, H., Andino, J.M. and Li, Y., “Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals,” ACS Catal. 2, 1817-1828, 2012.
[33]  Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E. and Batzill, M., “Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films,” Sci. Rep. 4, 40431-40438, 2015.
[34]  Dai, K., Lu, L. and Dawson, G., “Development of UV-LED/TiO2 device and their application for photocatalytic degradation of methylene blue,” J. Mater. Eng.Perform. 22 1035-1040, 2013.
[35]  Zhang, T.Y., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J.C. and Serpone, N., “Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation,” J. Photochem. Photobiol. A 140, 163-172, 2001.
[36]  Wang, X., Feng, Z., Shi, J., Jia, G., Shen, S., Zhou, J. and Li, C., “Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition,” Phys. Chem. Chem. Phys. 12, 7083-7090, 2010.
[37]  Banat, F., Al-Asheh, S., Al-Rawashteh, M. and Nusair, M., “Photo-degradation of methylene blue dye bye the UV/H2O2 and UV/aceton oxidation processes,” J. Desalination. 18, 225-232, 2005.
[38]  Ling, C. and Mohamed, A., “Photo degradation of methylene blue dye in aqueous stream,” J. Technol. 40, 91-103, 2004.
[39]  Alkaim, A.F., Kandiel, T.A., Hussein, F.H., Dillert, R. and Bahnemann, D. W., “Solvent-free hydrothermal synthesis of anatase TiO2 nanoparticles with enhanced photocatalytic hydrogen production activity,” Appl. Catal. A: General 466, 32-37, 2013.
[40]  Benetoli, L. O. de B., Cadorin, B. M., Postiglione, C. da S., de Souza, I.G., and Debacher, N.A., “Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor,” J. Braz. Chem. Soc., 22, 1669-1678, 2011.
[41]  Lee, B.-N., Liaw, W.-D. and Lou, J.-C., “Photocatalytic Decolorization of Methylene Blue in Aqueous TiO2 Suspension,” Environ. Eng. Sci. 16, 165-175, 1999.