American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: http://www.sciepub.com/journal/ajmse Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Materials Science and Engineering. 2017, 5(1), 6-16
DOI: 10.12691/ajmse-5-1-2
Open AccessArticle

Effects of Increasing Chitosan Nanofibre Volume Fraction on the Mechanical Property of Hydroxyapatite

Dare Victor Abere1, , Grace Modupe Oyatogun2, Ifeoluwa Emmanuel Akinwole2, Abiodun Ayodeji Abioye3, Azeez Lawan Rominiyi4 and Igonwelundu Magnus T.1

1Department of Metal Processing and Production, National Metallurgical Development Centre, Jos, Nigeria

2Department of Materials Science and Engineering, Obafemi Awolowo University, Ile – Ife, Nigeria

3Department of Mechanical Engineering, Covenant University, Ota, Nigeria

4Department of Research and Development, Prototype Engineering Development Institute, Ilesa, Nigeria

Pub. Date: June 07, 2017

Cite this paper:
Dare Victor Abere, Grace Modupe Oyatogun, Ifeoluwa Emmanuel Akinwole, Abiodun Ayodeji Abioye, Azeez Lawan Rominiyi and Igonwelundu Magnus T.. Effects of Increasing Chitosan Nanofibre Volume Fraction on the Mechanical Property of Hydroxyapatite. American Journal of Materials Science and Engineering. 2017; 5(1):6-16. doi: 10.12691/ajmse-5-1-2

Abstract

This work attempted to synthesize chitosan (CH) nanofibre from crab shell and hydroxyapatite, HA, from limestone with the objective of studying the effects of increasing volume fraction of chitosan nanofibre on the mechanical properties of HA. Mechanical characterization of different fraction composite was carried out to study the effects of increasing volume fraction of chitosan nano fibre on the mechanical properties of HA. In addition, surface characterization of the composite was carried out using Fourier Transform Infrared Spectrometry, FT-IR. Results obtained indicated that the optimum mechanical properties were obtained at a volume fractions of 30: 70, CH: HA respectively; average compressive strength of 10.12 MPa; average tensile strength of 173.9 MPa; average hardness value of 420.80 HV; average fracture toughness of 14.72 MPa.m1/2; average elastic modulus of 0.1583 GPa and average bending strength of 157.96 MPa were obtained for this optimum volume fractions. Increasing volume fractions of chitosan nanofibre was therefore found to result in decrease in compressive strength, hardness and elastic modulus of HA while its tensile strength, bending strength and fracture toughness increased. The FTIR revealed that possible interaction between the NH2 group and the primary and secondary –OH group of CH with Ca2+ (metal coordination interaction) of HA might be responsible for the higher mechanical property of HA. In conclusion, it was found that increasing chitosan volume fraction in chitosan/HA composite results in increasing strength of hydroxyapatite, consequently enhancing its load bearing ability.

Keywords:
hydroxyapatite chitosan nanofibre composite volume fraction

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Wang, X., Ma, J., Wang, Y., He, B: “Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements”. Biomaterials, 22, pp.2247-2255, 2001.
 
[2]  Sono A. “Synthesis of Nano-Hydroxyapatite”. .Journal of Biomed. Res., 3, 34-39, 2003.
 
[3]  Park S. B., You J. O., Park H. Y., Haam S. J. Kim W. S: Biomaterials, Park ed. 22. France, 2001.
 
[4]  Suzuki T., Matsumoto T., Hagino Y: Science and Technology of Polymers and Advanced Materials (Eds: P. N. Prasad, J. E. Mark, S. H., 1998.
 
[5]  VandeVord P. J., Matthew H. W., DeSilva S. P., Mayton L. Wu B., Wooley P. H: “Property and Applications of Chitosan”.J. Biomed. Mater.Res., 59, 585, 2002.
 
[6]  Luo X. L., Xu J. J., Wang J. L., Chen H. Y: Chitosan composite“ Chem. Commun.,21, 69-72, 2005.
 
[7]  Langer R., Tirrell D.A., Kumar M. N: “Toughening of alumina/zirconia ceramic composites with silver particles”. J. Eur. Ceram. Soc., 22, 2165-2168, 2004.
 
[8]  Nam Y.S., Won H.O., Park, Daewoo I., Samuel M., Hudson: Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibres. Carbohydrate Polymers 80: 291-295, 2010.
 
[9]  JayachandranVenkatesan and KimSe-Kwon: “Chitosan Composites for Bone Tissue Engineering-An Overview.” J. Mar. Drugs, 8, 2252-2266, 2010.
 
[10]  Teng, S.; Lee, E.; Yoon, B.; Shin, D.; Kim, H.; Oh, J. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J. Biomed. Mater. Res. Part A, 88, 569-580, 2009.
 
[11]  Itoh S., Kikuchi M., Koyama Y., Matumoto H.N., Takakuda, K. and Shinomiya K. “Development of a novel biomaterial, hydroxyapatite/collagen (HAp/Col) composite for medical use,” j. Bio Med. Mater. Eng. Vol. 15, no 1 -2, pp. 29-41, 2005.
 
[12]  Masanori K.B., Hiroko N., Matsumotob C., Takeki Y., K. Yoshihisa K., Kazuo T. and Junzo T. “Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites,” Biomaterials vol. 25, pp. 63 (2004).
 
[13]  Yamaguchi, I.; Tokuchi, K.; Fukuzaki, H.; Koyama, Y.; Takakuda, K.; Monma, H.; Tanaka, J. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites”. J. Biomed.Mater. Res. 55, 20-27, 2001.
 
[14]  S.S. Liao, F.Z. Cui, X.D. Zhu. “Osteoblasts Adherence and Migration through. Three-dimensional Porous Mineralized Collagen Based Composite: nHAC/PLA,” j.Bioact. Compat. Polym. vol. 19, pp. 117-128, 2004.
 
[15]  Zhang S.M., Cui F.Z., Liao S.S., Zhu Y. and Han L., “Synthesis and biocompatibility of porous nanohydroxyapatite/collagen/alginate composite,” j. Mater. Sci.: Mater. Med. vol. 14, pp. 641-648, 2003.
 
[16]  Hae-Won K., Jonathan C.K. and Hyoun-Ee K.. ”Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite,” J. Biomed. Mater. Res. vol. 72, pp. 136-14, 2005
 
[17]  Myung C.C., Ching-Chang K. and William H.D. Investigations of mechanical and biological properties of porous hydroxyapatite scaffolds produced by novel shake gel casting method,” Biomaterials. vol. 24, pp. 2853-2859, 2003.
 
[18]  Sun L, Xu HH, Takagi S, Chow LC. Fast setting calcium phosphate cement chitosan composite: mechanical properties and dissolution rates. J Biomater Appl 2007; 21(3): 299-315.
 
[19]  Chesnutt B, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, et al. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A 2009; 88(2): 491-502.
 
[20]  Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 2004; 25: 3829-35.
 
[21]  Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Mater Character 2007; 58(4): 339-48.
 
[22]  Vogt J, Brandes G, Krüger I, Behrens P, Nolte I, Lenarz T, Comparison of different nanostructured biomaterials in subcutaneous tissue. J Mater Sci Mater Med 2008; 19(7): 2629-36.
 
[23]  Turck C, Brandes G, Krueger I, Behrens P, Mojallal H, Lenarz T, Histological evaluation of novel ossicular chain replacement prostheses: an animal study in rabbits. Acta Otolaryngol 2007; 127(8): 801-8.
 
[24]  Lijun Kong, Yuan Gao, Wenling Cao, Yandao Gong, Nanming Zhao, Xiufang Zhang Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds.
 
[25]  Jeong H.S., Venkatesan J. and Kim S. Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules, Elsevier Volume 57, June 2013, Pages 138-141.
 
[26]  Lowe B., Venkatesan J., Anil S., Shim M.S. and Kim S. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules 2016 Published by Elsevier B.V.
 
[27]  Li H, C. Zhou, M. Zhu, J. Tian and J. Rong, "Preparation and Characterization of Homogeneous Hydroxyapatite/Chitosan Composite Scaffolds via In-Situ Hydration," Journal of Biomaterials and Nanobiotechnology, 1(1) pp. 42-49, 2010.
 
[28]  Wassani T. and Whattanapong A: Design and preparation of polymeric scaffolds for tissue engineering. Expert Review on Medical Devices; 3(6): 835-851, 2006.
 
[29]  Mackay P. Mass W.A., Mass A., Tighe B: A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters. Blends of biodegradable polymers and recent advances in biodegradation studies Polym. Int., 47 p. 89 Materials. Biomaterials; 26(33): 6565-6578, 2012.
 
[30]  Nwankwu, E. O., 1993. Microbial Pollution in the Lagos coastal lagoon, Nigeria.American Society of Civil Engineers Publisher, 345 East, 47 Street, New York, pp. 14-25.
 
[31]  Asseez, L.O., Fayose, E.A. and Omotsola, M.E., 1974. Ecology of Ogun River Estuary, Nigeria.Paleogeography, Paleoclimatology, Paleoecology, vol. 16. pp. 243-260.
 
[32]  Okoye, B. C. O., Afolabi, O. A. and Ajao, E. O., 1991. Heavy metals in the Lagos lagoon sediments. International Journal of Environmental Studies. Issue 37; pp. 35-41.
 
[33]  Defelice, R.C., Eldredge, L.G. and Carlton, V.T. (2001). Non-indigenous invertebrates. In: Guidebook to the introduced marine species in Hawaiian water, Eldredge L.G. & Smith, C. (eds), Bishop Museum Technical Report 21, 217-274.
 
[34]  Chindah, A.C ., C.C .B . Tawari and K.A. Ifechukwude, 2000. The food and feeding habits of the swimming crab, Callinectes am nicola (Portunidae) of the New Calabar Rive r, Nigeria. J. Appl. Sci. Environ. Manage., 4: 51-57.
 
[35]  Emmanuel, B.E., 200 8. The Fishery and bionomics of the swimming crab, Callinectes amnicola (DeRocheburne, 1883) from a Tropical Lagoon and its adjacent creek, South West, Nigeria. J. Fish. Aquat. Sci., 3(2): 114-125.
 
[36]  Smallegange, I.M. & Van Der Meer, J. (2003). Why do shore crabs not prefer the most profitable mussels? Journal of Animal Ecology (72), 599-607.
 
[37]  Kwei, E.A. (1978). Size composition, growth and sexual maturity of Callinectes latimanus (Rath) in two Ghanaian lagoons. Zoology Journal Linnaeus Society 64, 151-157.
 
[38]  Food and Agriculture Organization (FAO) (1990). Field guide to commercial marine resources of the Gulf of Guinea RAFR/014/F1/90/02.
 
[39]  Evans A. G. and Charles E. A. Fracture Toughness Determination by Indentation. J. Am. Ceram. Soc., 59, pp. 371-372, 1976.
 
[40]  Currey J. D. Physical characteristics affecting the tensile failure property of compact bone. J. Biomech. 23, 837-844, 1990.
 
[41]  Li, B.; Hu, Q.; Qian, X.; Fang, Z.; Shen, J. Bioabsorbable chitosan/hydroxyapatite composite rod for internal fixation of bone fracture prepared by in situ precipitation .Acta Polym. Sin., 6, 828-833, 2002.
 
[42]  Wang, R. Z., Cui, F. Z., Lu, H. B., Wen, H. B., Ma, C. L., and Li, H. D: Synthesis of nanophase hydroxyapatite/collagen composite”. Journal of materials science letters, 14(7), 490-492, 1995.
 
[43]  Silva, V.V., Lameiras, F.S., Domingues, R.Z. Microstructural and Mechanical Properies of bioceramics. Journal of Biomedical Materials Research, 54, 139-148, 2000.
 
[44]  Li, Z.; Yubao, L.; Aiping, Y.; Xuelin, P.; Xuejiang, W.; Xiang, Z. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J. Mater. Sci. Mater. Med., 16, 213-219, 2005.
 
[45]  Kim H. M., Sasaki Y., Suzuki S. Mechanical Property of Bioactive ceramics and cancellous bones”. Journal of Bioceramics, 6, 45-48, 2000.
 
[46]  Thomson, R.C., Yaszemski, J.M., Mikos, A.G. Hydroxyapatite fibre reinforced poly (alpha-hyrdoxy esther) foams for bone regeneration. Biomaterials 19, 1935-1943, 1998.
 
[47]  Roeder, R.K., Converse, G.L., Kane, R.J., Yue, W. Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM 60(3), 38-45, 2008.
 
[48]  Ashman R. B., Guo A., and Hasting L. A continuous wave technique for the measurement of the elastic points of cortical bone,” J. Biomechanics, 17(5), 349-361, 1984.
 
[49]  Rho J.Y., Kuhn-Spearing, and Zioupos P. Mechanical property and the Hierarchical Structure of Bone. Med. Eng. Phys., 20, 99-102, 1998.
 
[50]  Kokubo, T. Bioceramics and their clinical applications. Bioceramics, 13, 227-230, 2008.
 
[51]  Fischer, H., and Marx, R. Fracture toughness of dental ceramics: comparison of bending and indentation method. Dental Materials, 18(1), 12-19, 2002.
 
[52]  Harris B., Dorey S. E., Cooke R. G. Strength and toughness of fibre composites Comp Sci Technol., 31, 121-144, 1988.
 
[53]  Melvin V., L. Determination of tensile strength of electrospun single nanofibres through modeling tensile behavior of the nanofibrous mat".Composites Part B: Engineering 43: 15, 2011.
 
[54]  Keavenvy A. N.,Kokubo, T., Kim, H. M., and Kawashita, M. Novel bioactive materials with different mechanical properties. .Biomaterials, 24(13), 2161-2175, 1998.
 
[55]  Yuan, H.; Chen, N.; Lü, X.; Zheng, B. Experimental study of natural hydroxyapatite/chitosan composite on reconstructing bone defects. J. Nanjing Med. Univ., 22, 372–375 2008.
 
[56]  Burstein A.H., Currey, J.D., Frankel V. H. and Reilly D. T. The ultimate properties of bone tissue: the effects of yielding. J. Biomech., 5, 34-44, 1972.
 
[57]  Raif E. M. and Harmand M. F. Molecular interface characterization in human bone matrix: “Biochemical and IR Spectroscopic Studies”. Biomaterials, 14, 978-984, 1993.