Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2017, 5(7), 510-517
DOI: 10.12691/jfnr-5-7-9
Open AccessArticle

Effect of Capsosiphon fulvescens on Ethanol-induced Liver Damage in HepG2 Cells over Expressing CYP2E1

Haneul Jo1, Ok-Kyung Kim1, 2, Ho-Geun Yoon3, Eungpil Kim4, Kyungmi Kim5, Yoo-Hyun Lee6, Kyung-Chul Choi7, Jeongmin Lee8, Jeongjin Park1, 2, and Woojin Jun1, 2,

1Division of Food and Nutrition, Chonnam National University, Gwangju, South Korea

2Research Institute for Human Ecology, Chonnam National University, Gwangju, South Korea

3Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea

4Marine Biotechnology Research Center, Wando, South Korea

5Department of Biofood Analysis, Korea Bio Polytechnic, Ganggyung, South Korea

6Department of Food and Nutrition, The University of Suwon, Suwon, South Korea

7Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea

8Department of Medical Nutrition, Kyung Hee University, Yongin, South Korea

Pub. Date: July 07, 2017

Cite this paper:
Haneul Jo, Ok-Kyung Kim, Ho-Geun Yoon, Eungpil Kim, Kyungmi Kim, Yoo-Hyun Lee, Kyung-Chul Choi, Jeongmin Lee, Jeongjin Park and Woojin Jun. Effect of Capsosiphon fulvescens on Ethanol-induced Liver Damage in HepG2 Cells over Expressing CYP2E1. Journal of Food and Nutrition Research. 2017; 5(7):510-517. doi: 10.12691/jfnr-5-7-9

Abstract

In the present study, the protective effects of 10% ethanol extract of Capsosiphon fulvescens (CFE10) against alcoholic liver damage were investigated in vitro using CYP2E1-overexpressing hepatocytes (HepG2/2E1). To determine whether CFE10 attenuated ethanol-induced cell death, we compared the viability of HepG2/2E1 cells treated with 250 mM ethanol in the presence or absence of CFE10. Cell viability significantly increased after treatment with CFE10 and ethanol compared with that of cells treated with only ethanol. Additionally, CFE10 inhibited ethanol-induced ROS formation and lipid peroxidation. We also found that CFE10 attenuated the mRNA expression of CYP2E1, as well as decreased ethanol-induced lipid droplets, through stimulation of the AMPK pathway. Based on these results, the protective effect of CFE10 extract from C. fulvescens against liver damage and fatty liver induced by ethanol may occur via the alleviation of oxidative stress.

Keywords:
capsosiphon fulvescens alcohol CYP2E1 reactive oxygen species liver damage

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  Wu, D.; Zhai, Q.; Shi, X. Alcohol-induced oxidative stress and cell responses. J. Gastroenterol. Hepatol. 2006, 21, S26-29.
 
[2]  Lu, Y.; Cederbaum, A.I. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 2008, 44, 723-738.
 
[3]  Radosavljević, T.; Mladenović, D.; Vucević, D. The role of oxidative stress in alcoholic liver injury. Med. Pregl. 2009, 62, 547-553.
 
[4]  Pérez, M.J.; Cederbaum, A.I. Adenovirus-mediated expression of Cu/Zn- or Mn-superoxide dismutase protects against CYP2E1-dependent toxicity. Hepatology 2003, 38, 1146-1145.
 
[5]  Koch, O.R.; Pani, G.; Borrello, S.; Colavitti, R.; Cravero, A.; Farrè, S.; Galeotti, T. Oxidative stress and antioxidant defenses in ethanol-induced cell injury. Mol. Aspects Med. 2004, 25, 191-198.
 
[6]  Mantena, S.K.; King, A.L.; Andringa, K.K.; Eccleston, H.B.; Bailey, S.M. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic. Biol. Med. 2008, 44, 1259-1272.
 
[7]  Emerling, B.M.; Weinberg, F.; Snyder, C.; Burgess, Z.; Mutlu, G.M.; Viollet, B.; Budinger, G.R.; Chandel, N.S. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic. Biol. Med. 2009, 46, 1386-1391.
 
[8]  Mungai, P.T.; Waypa, G.B.; Jairaman, A.; Prakriya, M.; Dokic, D.; Ball, M.K.; Schumacker, P.T. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol. Cell Biol. 2011, 31, 3531-3545.
 
[9]  Fernández-Alvarez, A.; Alvarez, M.S.; Gonzalez, R.; Cucarella, C.; Muntané, J.; Casado, M. Human SREBP1c expression in liver is directly regulated by peroxisome proliferator-activated receptor alpha (PPARalpha). J. Biol. Chem. 2011, 286, 21466-2177.
 
[10]  The State of World Fisheries and Aquaculture. Food and Agriculture Organization 2014.
 
[11]  Brain, R.A.; Hanson, M.L.; Solomon, K.R.; Brooks, B.W. Aquatic plants exposed to pharmaceuticals: effects and risks. Rev. Environ. Contam. Toxicol. 2008, 192, 67-115.
 
[12]  Kim, E.Y.; Choi, Y.H.; Lee, J.I.; Kim, I.H.; Nam, T.J. Antioxidant Activity of Oxygen Evolving Enhancer Protein 1 Purified from Capsosiphon fulvescens. J. Food Sci. 2015, 80, 1412-1417.
 
[13]  Kwon, M.J.; Nam, T.J. A polysaccharide of the marine alga Capsosiphon fulvescens induces apoptosis in AGS gastric cancer cells via an IGF-IR-mediated PI3K/Akt pathway. Cell Biol. Int. 2007, 31, 768-775.
 
[14]  Karnjanapratum, S.; Tabarsa, M.; Cho, M.; You, S. Characterization and immunomodulatory activities of sulfated polysaccharides from Capsosiphon fulvescens. Int. J. Biol. Macromol. 2012, 51, 720-729.
 
[15]  McCord, J.M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049-6055.
 
[16]  Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121-126.
 
[17]  Habig, W.H.; Jakoby, W.B. Glutathione S-transferases (rat and human). Methods Enzymol. 1981, 77, 218-231.
 
[18]  Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158-169.
 
[19]  Carlberg, I.; Mannervik, B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 1975, 250, 5475-5480.
 
[20]  Akerboom, T.P.; Sies, H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981, 77, 373-382.
 
[21]  Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990, 186, 421-431.
 
[22]  Nguyen, P.; Leray, V.; Diez, M.; Serisier, S.; Le Bloc'h, J.; Siliart, B.; Dumon, H. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 2008, 92, 272-283.
 
[23]  Lieber, C.S. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 2004, 34, 9-19.
 
[24]  Kessova, I.; Cederbaum, A.I. CYP2E1: biochemistry, toxicology, regulation and function in ethanol-induced liver injury. Curr. Mol. Med. 2003, 3, 509-518.
 
[25]  Cho, M.; Kang, I.J.; Won, M.H.; Lee, H.S.; You, S. The antioxidant properties of ethanol extracts and their solvent-partitioned fractions from various green seaweeds. J. Med. Food 2010, 13, 1232-1239.
 
[26]  Sozio, M.S.; Lu, C.; Zeng, Y.; Liangpunsakul, S.; Crabb, D.W. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G739-747.
 
[27]  Nakajima, T.; Kamijo, Y.; Tanaka, N.; Sugiyama, E.; Tanaka, E.; Kiyosawa, K.; Fukushima, Y.; Peters, J.M.; Gonzalez, F.J.; Aoyama, T. Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology 2004, 40, 972-980.
 
[28]  Tang, C.C.; Lin, W.L.; Lee, Y.J.; Tang, Y.C.; Wang, C.J. Polyphenol-rich extract of Nelumbo nucifera leaves inhibits alcohol-induced steatohepatitis via reducing hepatic lipid accumulation and anti-inflammation in C57BL/6J mice. Food Funct. 2014, 5, 678-687.
 
[29]  Rodeiro, I.; Olguín, S.; Santes, R.; Herrera, J.A.; Pérez, C.L.; Mangas, R.; Hernández, Y.; Fernández, G.; Hernández, I.; Hernández-Ojeda, S.; Camacho-Carranza, R.; Valencia-Olvera, A.; Espinosa-Aguirre, J.J. Gas Chromatography-Mass Spectrometry Analysis of Ulva fasciata (Green Seaweed) Extract and Evaluation of Its Cytoprotective and Antigenotoxic Effects. Evid. Based Complement Alternat. Med. 2015, 520598.