Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2016, 4(11), 713-719
DOI: 10.12691/jfnr-4-11-3
Open AccessArticle

Aphrodisiac Property of the Aqueous Extract of Cynanchum wilfordii

Gyuok Lee1, 2, Jaeyong Kim2, Sang-o Pan2, Miri Kim2, Woojin Jun1 and Chul-yung Choi2,

1Department. of Food and Nutrition, Chonnam National University, Gwangju, South Korea

2Jeonnam Institute of Natural Resources Research, Jangheung-gun, Jeollanamdo, South Korea

Pub. Date: October 27, 2016

Cite this paper:
Gyuok Lee, Jaeyong Kim, Sang-o Pan, Miri Kim, Woojin Jun and Chul-yung Choi. Aphrodisiac Property of the Aqueous Extract of Cynanchum wilfordii. Journal of Food and Nutrition Research. 2016; 4(11):713-719. doi: 10.12691/jfnr-4-11-3

Abstract

The purpose of the current study was to investigate the total phenolic content and the antioxidant activity of the aqueous extract of Cynanchum wilfordii Radix (CWW). In addition, we conducted in vitro and in vivo tests to examine whether the aqueous extract of CWW has an aphrodisiac property. The results indicated significant increases in testosterone synthesis in Leydig TM3 cells when the cells were treated with CWW at concentrations of 50, 100, and 200 μg/mL. In the in vivo study, CWW (50, 100, and 200 mg/kg body weight/day) and tadalafil (2 mg/kg body weight/day) were administered by oral gavage to male Sprague-Dawley (SD) rats for 15 days. On day 15, the rats were evaluated for sexual behavior parameters (mount latency, ML; mounting frequency, MF; intromission latency, IL; intromission frequency, IF; ejaculation latency, EL; post-ejaculatory interval, PEI) by pairing them with estrus females. Following the sexual interactions, blood samples were collected from the rats to evaluate their serum hormone levels. In the rats administered 200 mg/kg body weight/day of CWW, MF (p < 0.05) and IF (p < 0.01) significantly increased, while ML, IL, EL, and PEI significantly (p < 0.05) decreased. In addition, the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone increased. CWW improved sexual motivation, libido, and potency in the male SD rats by stimulating LH, FSH, and testosterone secretion. The results indicated that Cynanchum wilfordii has an aphrodisiac effect.

Keywords:
Male sexual behavior Aphrodisiac Testosterone Cynanchum wilfordii

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Walker DW, & Benzer S. (2004). Mitochondrial “swirls” induced by oxygen stress and in the Drosophila mutant hyperswirl. ProcNatl Acad Sci USA ; 101, 10290-5.
 
[2]  Hoffmann S, Spitkovsky D, Radicella JP, Epe B, & Wiesner RJ. (2004). Reactive oxygen species derived from the mitochondrial respiratory chain are not responsible for the basal levels of oxidative base modifications observed in nuclear DNA of Mammalian cells. Free Radic Biol Med; 36, 765-73.
 
[3]  Zirkin BR, & Chen H. (2000). Regulation of Leydig cell steroidogenic function during aging. Bio Reprod, 63, 977-81.
 
[4]  Sanocka D, & Kurpisz M. (2004). Reactive oxygen species and sperm cells. Reprod Biol Endocrinol, 2(12), 1-7.
 
[5]  Henkel R. (2005). The impact of oxidants on sperm functions. Andrologia, 37, 205-6.
 
[6]  Vernet P, Aitken RJ, & Drevet JR. (2004). Antioxidant strategies in the epidydimis. Mol Cell Endocrinol, 216, 31-9.
 
[7]  EI Gharras H. (2009). Polyphenois:food sources, properties and applications-a review. International journal of Food Science & Technology, 44, 2512-18.
 
[8]  Joseph S, Edirisinghe I, & Burton-Freeman B. (2016). Fruit polyphenols:a review of anti-inflammatory effects in humans. Critical Reviews in Food Science and Nutrition, 56(3), 419-44.
 
[9]  Petti S, & Scully C. (2009). polyphenols, oral health and disease:a review. Journal of Dentistry, 37, 413-23.
 
[10]  Hu M, Zhang Y, Ma H, Ng E, & Wu X. (2013). Eastern medicine approaches to male inferility. Seminars in reproductive Medicine, 31, 301-10.
 
[11]  Low W, & Tan H. (2007). Asian traditional medicine for erectile dysfunction. The journal of men's health & gender, 4, 245-250.
 
[12]  Zhang Y, Ge R & Hardy M. (2008). Androgen-forming stem Leydig cell: identification, function and therapeutic potential. Dis Markers, 24, 277-86.
 
[13]  Chen L, Zhao Y & Zhang Y. (2012). Progress on the research of stem Leydig cell line in the testis of rodents. Wei Sheng Yan Jiu, 41, 158-62.
 
[14]  Wang C, Hikim A, Ferrini M, Bonavera J, Vernet D, Leung A & Swerdloff R. (2002). Male reproductive ageing: using the brown Norway rat as a model for man. Novartis Found Symp, 242, 82-95.
 
[15]  Wu C, Yu T & Chen M. (2000). Age related testosterone level changes and male andropause syndrome. Chang Gung Med J, 23, 348-53.
 
[16]  Sattler F, Bhasin S, He J, Chou C, Castaneda-Sceppa C, Yarasheski K & Azen S. (2011). Testosterone threshold levels and learn tissue mass targets needed to enhance skeletal muscle strength and founction: the HORMA trial. J Gerontol A Biol Sci Med Sci, 66, 122-29.
 
[17]  Chen R & Ng K. (2010). Self-referred older Asian males in a men's health clinic: the inter-relationships between androgens, metabolic parameters and quality of life measures. Aging Male, 13, 233-41.
 
[18]  Nigro N & Shrist-Crain M. (2012). Testosterone treatment in the aging male: myth or reality? Swiss Med Wkly, 142, w13539.
 
[19]  Ho C, Singam P, Hong G & Zainuddin Z. (2011). Male sexual dysfunction in Asia. Asian J Androl, 13, 537-42.
 
[20]  Nyby J. (2008). Reflexive testosterone release: A model system for studying the nongenomic effects of testosterone upon male behavior. Front neuroendocrinol, 29, 199-210.
 
[21]  Bonilla-Jaime H, Vazquez-Palacios G, Arteaga-Silva M & Retana-Marquez S. (2006). Hormonal responses to different sexually related conditions in male rats. Horm Behav, 49, 376-82.
 
[22]  Pfaus J, Kippin T & Centeno S. (2001). Conditioning and sexual behavior: A review. Horm Behav, 40, 291-321.
 
[23]  Ibebunjo C, Eash J, Li C, Ma Q & Glass D. (2011). Voluntary running, skeletal muscle gene expression, and signaling inversely regulated by orchidectomy and testosterone replacement. Am J Physiol Endocrinol Metab, 300, E327-340.
 
[24]  Chen H, Luo L, Liu J, Brown T & Zirkin BR. (2005). Aging and caloric restriction: effects on Leydig cell steroidogenesis. Exp Gerontol, 40, 498-505.
 
[25]  O'Brien JH, Lazarou S, Deane L, Jarvi K & Zini A. (2005). Erectile dysfunction and andropause symptoms in infertile men. J Urol, 174, 1932-34.
 
[26]  Cunningham G. (2013). Andropause or male menopause? Rationale for testosterone replacement therapy in older men with low testosterone levels. Endocr Pract, 19, 847-52.
 
[27]  Barqawi A & Crawford E. (2006). Testosterone replacement therapy and the risk of prostate cancer. Is there a link? Int J Impot Res, 18, 323-28.
 
[28]  Chang A, Kwak B, Yi K & Kim J. 2012. The effect of herbal extract (EstroG-100) on pre-, peri- and post-menopausal women: a randomized double-blind placebo-controlled study. Phytother Res, 26, 510-16.
 
[29]  Singleton, V., Orthofer, R., & Lamuela-Raventos, R. (1999). Analysis of Total Phenola and Other Oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-78.
 
[30]  Bondet, V., Brand-Williams, W., & Berset, C. (1997). Kinetics and Mechanisms of antioxidant activity using the DPPH free radical method. LWT-Food Science and Technology, 30, 609-15.
 
[31]  Benzie, I., & Strain, J. (1999). Ferric reducing/antioxidant power assay:Direct measure of total antioxident activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15-27.
 
[32]  Agmo A. (2003). Unconditioned sexual incentive motivation in the male Norway rat (Rattus norvegicus). Journal of Comparative Psychology, 117, 3-14.
 
[33]  Ageel AM, Islam MW, Ginawi OT, & Al-yahya MA. (1994). Evaluation of the aphrodisiac activities of Litsea chinensis (Lauraceae) and Orchis maculata (Orchidaceae) extracts in rats. Phytother Res, 8, 103-5.
 
[34]  Drewes SE, George J, & Khan F. (2003) Recent findings on natural products with erectile-dysfunction activity. Phytochem, 62, 1019-25.
 
[35]  Gauthaman K, & Ganesan AP. (2008). The hormonal effects of Tribulus terrestris and its role in the management of male erectile dysfunction – an evaluation using primates, rabbit and rat. Phytomedicine, 15, 44-54.
 
[36]  Zamble A, Sahpaz S, Brunet C, & Bailleul F. (2008). Effects of Microdesmis keayana roots on sexual behavior of male rats. Phytomedicine, 15, 625-9.
 
[37]  Padashetty SA, & Mishra SH. (2007). Aphrodisiac studies of Tricholepis glaberrima with supportive action from antioxidant enzymes. Pharm Biol, 45, 580-6.
 
[38]  Konczak I, Yoshimoto M, Hou D, Terahara N, & Yamakawa O. (2003). Potential chemopreventive properties of antho-cyanin-rich aqueous extracts from in vitro produced tissue of sweet potato (Ipomoea batatasL.). J Agricultural Food and Chemisty, 51, 5916-22.
 
[39]  Lee DU, Shin US, & Huh K. (1996). Inhibitory effects of gagaminie, a steroidal alkaloid from Cynanchum wilfordii on lipid peroxidation and aldehyde oxidase activity. Planta Med, 62, 485-7.
 
[40]  Hwang BY, Kim YH, Ro JS, Lee KS, & Lee JJ. (1999). Acetophenones from the root of Cynanchum wilfordii Hemsley. Arch. Pharm. Res, 22, 72-4.
 
[41]  Mitsuhashi H, Sakurai K, & Nomura T. (1966). Constituents of Asclepiaclaceae plants. Chem. Pharm. Bull, 14, 712-7.
 
[42]  Lee DU, Shin US, & Huh K. (1998). Structure_activity relationships of gagaminine and its derivatives on the inhibition of hepatic aldehyde oxidase activity and lipid peroxidation. Arch. Pharm. Res, 21, 273-7.
 
[43]  Hwang BY, Kim SE, Kim YH, Kim HS, Hong YS, Ro JS, Lee KS, & Lee JJ. (1999). Pregnane glycoside multidrug-resistance modulators from Cynanchum wilfordii. J. Nat. Prod, 62, 640-3.
 
[44]  Kim MS, Baek JH, Park JA, Hwang BY, Kim SE, Lee JJ, & Kim KW. (2005). Wilfoside K1N isolated from Cynanchum wilfordii inhibits angiogenesis and tumor cell invasion. Int. J. Oncol, 26, 1533-9.
 
[45]  Lee MK, Yeo H, Kim J, Markelonis GJ, Oh TH, & Kim YC. (2000). Cynandione A from Cynanchum wilfordii protects cultured cortial neurons from toxicity induced by H2O2, L-glutamate, and kainate. J. Neurosci. Res, 59, 259-64.
 
[46]  Shen X, Lin X, Yin F, Ma H & Zou S. (2012). Effect of dehydroepiandrosterone on cell growth and mitochondrial funtion in TM-3 cells. Gen Comp Endocrinol, 177, 177-86.
 
[47]  Neill D, Vogel G, Hagler M, Kors D & Hennesey A. (1990). Diminished sexual activity in a new animal model of depression. Neurosci Biobehav Rev, 14, 73-6.
 
[48]  Tajuddin A, Ahmad S, Latif A & Qasmi A. (2004). Effect of 50% ethanolic extract of Syzygium aromaticum (L) Merr. & Perry. (clove) on sexual behaviour of normal male rats. BMC Complementary and Alternative Medicine, 4, 17-24.
 
[49]  Mills T, Reilly C & Lewis R. (1996). Androgens and penile erection: a review. J Androl, 17, 633-8.
 
[50]  Heaton J & Varrin S. (1994). Effects of castration and exogenous testosterone supplementation in an animal model of penile erection. The Journal of Urology, 151, 797-800.
 
[51]  Ludd J, Rajfer J & Gonzalez-Cadavid N. (1995). Dihydrotestosterone is the active androgen in the maintenance of nitric oxide – mediated penile erection in the rat. Endocrinology, 136, 1495-1501.
 
[52]  Zvara P, Sioufi R, Schipper H, Begin L & Brock G. (1995). Nitric oxide mediated erectile activity is a testosterone dependent event: a rat erection model. International Journal of Impotence Research, 7, 209-19.
 
[53]  Andersson K. (2001). Pharmacology of penile erection. Pharmacol Rev, 53, 417-50.
 
[54]  Yakubu M, Akanji M & Adesokan A. (2008). Androgenic potentials of aqueous extract of Massularia acuminata(G. Don) Bullock ex Hoyl stem in male Wistar rats. J Ethnopharmacol, 118, 508-13.
 
[55]  Thakur M, Chauhan N, Bhargava S & Dixit V. (2009). A comparative study on aphrodisiac activity of some ayurvedic herbs in male albino rats. Arch sex Behav, 38, 1009-15.
 
[56]  Hull E, Lorrain D, Du J, Matuszewich L, Lumley L, Putnam S & Moses J. (1999). Hormone–neurotransmitter interactions in the control of sexual. Behav. Brain Res, 105, 105-16.
 
[57]  Putnam S, Du J, Sato S & Hull E. (2001). Testosterone restoration of copulatory. Horm Behav, 39, 216-24.
 
[58]  Chauhan N & Dixit V. (2010). Effects of Bryonia laciniosa seeds on sexual behaviour. Int J Impot. Res, 22, 190-5.