Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2025, 13(4), 181-189
DOI: 10.12691/jfnr-13-4-2
Open AccessArticle

Honey Protects Against PM2.5-induced Damage Through Its Anti-inflammatory Effects in Human Lung Bronchial Epithelial Cells

Hung-Chun Lu1, Hui-Qi Liu2, Ming-Cheng Wu3 and Chi-Chung Peng2,

1Department of Otolaryngology, Kuang Tien General Hospital, Taichung, Taiwan

2Department of Biotechnology, National Formosa University, Yunlin, Taiwan

3Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan

Pub. Date: April 25, 2025

Cite this paper:
Hung-Chun Lu, Hui-Qi Liu, Ming-Cheng Wu and Chi-Chung Peng. Honey Protects Against PM2.5-induced Damage Through Its Anti-inflammatory Effects in Human Lung Bronchial Epithelial Cells. Journal of Food and Nutrition Research. 2025; 13(4):181-189. doi: 10.12691/jfnr-13-4-2

Abstract

Particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) can cause pulmonary injury and has emerged as a public health concern. Honey, a nutritional health product used in traditional medicine, has been shown to be effective for clinical applications ranging from wound healing to cancer treatment. Honey contains phenolics and flavonoids that have been extensively studied for their clinical activity in inflammation-mediated chronic diseases, as well as their ability to reduce inflammation in bronchial tubes (airways within the lungs). This study aimed to evaluate the protective effects of different honey samples against PM2.5-induced damage in the human lung epithelial cell line BEAS-2B. The results showed that honey pre-treatment markedly inhibited PM2.5-induced risk factors for chronic obstructive pulmonary disease through anti-inflammatory activity and protection of the epithelial barrier. Honey pre-treatment restored the expression of zonula occludens (ZO)-1, ZO-2, and alpha-1 antitrypsin in BEAS-2B cells after PM 2.5 treatment and downregulated the expression of the inflammatory factor interleukin (IL)-8 by more than 70%. These findings demonstrate the protective effects of honey against PM2.5-induced epithelial barrier damage and inflammation in BEAS-2B lung epithelial cells. Therefore, honey may be a promising compound for preventing PM2.5-triggered cell damage.

Keywords:
PM2.5 honey lung epithelial cell anti-inflammatory chronic obstructive pulmonary disease ZO-1/ZO-2 AAT

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Yan, J., Lai, C.H., Lung, S.C., Chen, C., Wang, W.C., Huang, P.I. et al. Industrial PM2.5 cause pulmonary adverse effect through RhoA/ROCK pathway. Sci Total Environ. 2017; 599-600: 1658-1666.
 
[2]  Thangavel, P., Park, D., Lee, Y.C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int J Environ Res Public Health. 2022, 19(12): 7511.
 
[3]  Sierra-Vargas, M.P., Montero-Vargas, J.M., Debray-García, Y., Vizuet-de-Rueda, J.C., Loaeza-Román, A., Terán, L.M. Oxidative Stress and Air Pollution: Its Impact on Chronic Respiratory Diseases. International Journal of Molecular Sciences. 2023, 24(1): 853.
 
[4]  Liu, C.W., Lee, T.L., Chen, Y.C., Liang, C.J., Wang, S.H., Lue, J.H. et al. PM2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway. Part Fibre Toxicol. 2018, 15(1): 4.
 
[5]  Ganesan, S., Comstock, A.T., Sajjan, U.S. Barrier function of airway tract epithelium. Tissue Barriers. 2013, 1(4): e24997.
 
[6]  Chen, M., Yang, T., Meng, X. et al. Azithromycin attenuates cigarette smoke extract-induced oxidative stress injury in human alveolar epithelial cells. Molecular Medicine Reports 2015; 11(5): 3414-3422.
 
[7]  Lucas, R., Verin, A.D., Black, S.M., Catravas, J.D. Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochem Pharmacol 2009, 77(12): 1763-72.
 
[8]  Bräuner, E.V., Mortensen, J., Møller, P. et al. Effects of ambient air particulate exposure on blood-gas barrier permeability and lung function. Inhal Toxicol. 2009, 21(1): 38-47.
 
[9]  Barnes, P.J., Shapiro, S.D., Pauwels, R.A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. The European Respiratory Journal. 2003, 22(4): 672–688.
 
[10]  Sinden, N.J., Baker, M.J., Smith, D.J., Kreft, J.U., Dafforn, T.R., Stockley, R.A. α-1-antitrypsin variants and the proteinase/antiproteinase imbalance in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015, 308(2): L179-190.
 
[11]  Silverman, E.K., Sandhaus, R.A. Clinical practice. Alpha1-antitrypsin deficiency. N Engl J Med. 2009, 360(26): 2749-2757.
 
[12]  Stoller, J.K., Aboussouan, L.S. Alpha1-antitrypsin deficiency. Lancet. 2005, 365(9478): 2225-2236.
 
[13]  Zuo, L., Pannell, B.K., Zhou, T., Chuang, C.C. Historical role of alpha-1-antitrypsin deficiency in respiratory and hepatic complications. Gene. 2016, 589(2): 118-122.
 
[14]  Alam, S., Li, Z., Janciauskiene, S., Mahadeva, R. Oxidation of Z α1-antitrypsin by cigarette smoke induces polymerization: a novel mechanism of early-onset emphysema. Am J Respir Cell Mol Biol. 2011, 45(2): 261-269.
 
[15]  Liu, J.R., Ye, Y.L., Lin, T.Y., Wang, Y.W., Peng, C.C. Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food Chem. 2013, 139(1-4): 938-943.
 
[16]  Ahmed, S., Othman, N.H. Honey as a potential natural anticancer agent: A review of its mechanisms. Evid Based Complement Alternat Med. 2013, 2013: 829070.
 
[17]  Sakač, M., Jovanov, P., Marić, A., Četojević-Simin, D., Novaković, A., Plavšić, D. et al. Antioxidative, Antibacterial and Antiproliferative Properties of Honey Types from the Western Balkans. Antioxidants (Basel). 2022, 11(6): 1120.
 
[18]  Attia, W.Y., Gabry, M.S., El-Shaikh, K.A., Othman, G.A. The anti-tumor effect of bee honey in Ehrlich ascite tumor model of mice is coincided with stimulation of the immune cells. Egypt J Immunol. 2008, 15(2): 169-183.
 
[19]  Khalil, I., Moniruzzaman, M., Boukraâ, L., Benhanifia, M., Islam, A., Islam, N. Physicochemical and antioxidant properties of Algerian honey. Molecules. 2012, 17(9): 11199-11215.
 
[20]  Abuelgasim, H., Albury, C., Lee, J. Effectiveness of honey for symptomatic relief in upper respiratory tract infections: a systematic review and meta-analysis. BMJ Evid Based Med. 2021, 26(2): 57-64.
 
[21]  Ranneh, Y., Akim, A.M., Hamid, H.A., Khazaai, H., Fadel, A., Zakaria, Z.A.et al.: Honey and its nutritional and anti-inflammatory value. BMC Complement Med Ther. 2021, 21(1): 30.
 
[22]  Moniruzzaman, M., Khalil, M.I., Sulaiman, S.A., Gan, S.H. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement Altern Med. 2013, 13: 43.
 
[23]  Wu, M.C., Wu, C.Y., Klaithin, K., Tiong, K.K., Peng, C.C. Effect of harvest time span on physicochemical properties, antioxidant, antimicrobial, and anti-inflammatory activities of Meliponinae honey. J Sci Food Agric. 2022, 102(13): 5750-5758.
 
[24]  Chuttong, B., Chanbang, Y., Sringarm, K., Burgett. M. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 2016, 192: 149-155.
 
[25]  Tuksitha, L., Chen, Y.S., Chen, Y., Wong, K., Peng, C.C. Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology. Journal of Asia-Pacific Entomology. 2018, 21(2): 563-570.
 
[26]  Chou, W.M., Liao, H.C., Yang,Y.C., Peng, C.C. Evaluation of Honey Quality with Stored Time and Temperatures. Journal of Food and Nutrition Research, 2020, 8(10), 591-599.
 
[27]  AOAC.: Office methods of analysis (15th edition) Association of Official Analytical Chemist Washington, DC, USA. 1990, 980. 23.
 
[28]  Yang, L., Wang, W.C., Lung, S.C., Sun, Z., Chen, C., Chen, J.K. et al. Polycyclic aromatic hydrocarbons are associated with increased risk of chronic obstructive pulmonary disease during haze events in China. Sci Total Environ. 2017, 574: 1649-1658.
 
[29]  Gilda, J.E., Gomes, A.V. Stain-Free total protein staining is a superior loading control to β-actin for Western blots. Anal Biochem, 2013, 440(2): 186-188.
 
[30]  Carlos, A.U., David, H., Carmen, G. Role of honey polyphenols in health. J. Apiproduct. Apimedical. Sci. 2011, 3 (4): 141 – 159.
 
[31]  Khalil, M.I., Alam, N., Moniruzzaman, M., Sulaiman, S.A., Gan, S.H. Phenolic acid composition and antioxidant properties of Malaysian honeys. J Food Sci. 2011, 76(6): C921-C928.
 
[32]  Li, Z., Alam, S., Wang, J., Sandstrom, C.S., Janciauskiene, S., Mahadeva, R. Oxidized {alpha}1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema. Am J Physiol Lung Cell Mol Physiol. 2009, 297(2): L388-L400.
 
[33]  Raweh, H.S.A., Badjah-Hadj-Ahmed, A.Y., Iqbal, J., Alqarni, A.S. Physicochemical Composition of Local and Imported Honeys Associated with Quality Standards. Foods, 2023, 12(11):2181.
 
[34]  Wu, J., Han, B., Zhao, S., Zhong, Y., Han, W., Gao, J. et al. Bioactive characterization of multifloral honeys from Apis cerana cerana, Apis dorsata, and Lepidotrigona flavibasis. Food Res Int. 2022, 161: 111808.
 
[35]  Fletcher, M.T., Hungerford, N.L., Webber, D., Carpinelli de Jesus, M., Zhang, J., Stone, I.S.J. et al. Stingless bee honey, a novel source of trehalulose: a biologically active disaccharide with health benefits. Sci Rep. 2020, 10(1): 12128.
 
[36]  Codex Alimentarius Commission (2019) Standard for Honey CXS 2019, 12-1981.
 
[37]  Oddo, L.P., Heard, T.A., Rodríguez-Malaver, A., Pérez, R.A., Fernández-Muiño, M., Sancho, M.T. et al. Composition and antioxidant activity of Trigona carbonaria honey from Australia. J Med Food. 2008, 11(4): 789-794.
 
[38]  Shamsudin, S., Selamat, J., Sanny, M., Abd, S.B., Jambari, N.N., Mian, Z. et al. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int. J. Food Prop. 2019, 22(1): 238–263.
 
[39]  Villacrés-Granda, I., Coello, D., Proaño, A. Ballesteros, I., Roubik, D.W., Jijón, G. et al. Honey quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT--Food Sci. Technol. 2021, 140(2021) 110737.
 
[40]  Zaid, S.S.M., Ruslee, S.S., Mokhtar, M.H. Protective Roles of Honey in Reproductive Health: A Review. Molecules. 2021, 26(11): 3322.
 
[41]  Eteraf-Oskouei, T., Najafi, M. Traditional and modern uses of natural honey in human diseases: a review. Iran J Basic Med Sci. 2013, 16(6): 731-742.
 
[42]  Schramm, D.D., Karim, M., Schrader, H.R., Holt, R.R., Cardetti, M., Keen, C.L. Honey with high levels of antioxidants can provide protection to healthy human subjects. J. Agric. Food Chem. 2003, 51(6): 1732-1735.
 
[43]  Sergiel, I., Pohl, P., Biesaga, M. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chem. 2014, 145: 404-408.
 
[44]  Gheldof, N., Engeseth, N.J. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J Agric Food Chem. 2002, 50(10): 3050-3055.
 
[45]  Rice-Evans, C.A., Miller, N.J., Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996, 20(7): 933-956.
 
[46]  Becerril-Sánchez, A.L., Quintero-Salazar, B., Dublán-García, O. et al. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants (Basel). 2021, 10(11): 1700.
 
[47]  Taormina, P.J. Niemira, B.A. Beuchat, L.R. Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int J Food Microbiol. 2001, 69(3): 217-225.
 
[48]  Dżugan, M., Tomczyk, M., Sowa, P., Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules. 2018, 23(8): 2069.
 
[49]  Feng, S., Gao, D., Liao, F., Zhou, F., Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 2016, 128: 67-74.
 
[50]  Basith, S., Manavalan, B., Shin, T.H. et al., The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. Nanomaterials (Basel) 2022, 12(15): 2656.
 
[51]  Jia, H., Liu, Y., Guo, D., He, W., Zhao, L., Xia, S. PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway. Environ Toxicol. 2021, 36(3): 298-307.
 
[52]  Denker, B.M., Nigam, S.K. Molecular structure and assembly of the tight junction. Am J Physiol. 1998, 274(1): F1-F9.
 
[53]  Taggart, C., Cervantes-Laurean, D., Kim, G., McElvaney, N.G., Wehr, N., Moss, J. et al., Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem. 2000, 275(35): 27258-27265.
 
[54]  You, K., Xu, X., Fu, J., Xu, S., Yue, X., Yu, Z. et al., Hyperoxia disrupts pulmonary epithelial barrier in newborn rats via the deterioration of occludin and ZO-1. Respir Res. 2012, 13(1): 36.
 
[55]  Zhang, Y.L., Li, Q.Q., Guo, W., Huang, Y., Yang, J. Effects of chronic ethanol ingestion on tight junction proteins and barrier function of alveolar epithelium in the rat. Shock. 2007, 28(2): 245-252.