[1] | Yan, J., Lai, C.H., Lung, S.C., Chen, C., Wang, W.C., Huang, P.I. et al. Industrial PM2.5 cause pulmonary adverse effect through RhoA/ROCK pathway. Sci Total Environ. 2017; 599-600: 1658-1666. |
|
[2] | Thangavel, P., Park, D., Lee, Y.C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int J Environ Res Public Health. 2022, 19(12): 7511. |
|
[3] | Sierra-Vargas, M.P., Montero-Vargas, J.M., Debray-García, Y., Vizuet-de-Rueda, J.C., Loaeza-Román, A., Terán, L.M. Oxidative Stress and Air Pollution: Its Impact on Chronic Respiratory Diseases. International Journal of Molecular Sciences. 2023, 24(1): 853. |
|
[4] | Liu, C.W., Lee, T.L., Chen, Y.C., Liang, C.J., Wang, S.H., Lue, J.H. et al. PM2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway. Part Fibre Toxicol. 2018, 15(1): 4. |
|
[5] | Ganesan, S., Comstock, A.T., Sajjan, U.S. Barrier function of airway tract epithelium. Tissue Barriers. 2013, 1(4): e24997. |
|
[6] | Chen, M., Yang, T., Meng, X. et al. Azithromycin attenuates cigarette smoke extract-induced oxidative stress injury in human alveolar epithelial cells. Molecular Medicine Reports 2015; 11(5): 3414-3422. |
|
[7] | Lucas, R., Verin, A.D., Black, S.M., Catravas, J.D. Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochem Pharmacol 2009, 77(12): 1763-72. |
|
[8] | Bräuner, E.V., Mortensen, J., Møller, P. et al. Effects of ambient air particulate exposure on blood-gas barrier permeability and lung function. Inhal Toxicol. 2009, 21(1): 38-47. |
|
[9] | Barnes, P.J., Shapiro, S.D., Pauwels, R.A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. The European Respiratory Journal. 2003, 22(4): 672–688. |
|
[10] | Sinden, N.J., Baker, M.J., Smith, D.J., Kreft, J.U., Dafforn, T.R., Stockley, R.A. α-1-antitrypsin variants and the proteinase/antiproteinase imbalance in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015, 308(2): L179-190. |
|
[11] | Silverman, E.K., Sandhaus, R.A. Clinical practice. Alpha1-antitrypsin deficiency. N Engl J Med. 2009, 360(26): 2749-2757. |
|
[12] | Stoller, J.K., Aboussouan, L.S. Alpha1-antitrypsin deficiency. Lancet. 2005, 365(9478): 2225-2236. |
|
[13] | Zuo, L., Pannell, B.K., Zhou, T., Chuang, C.C. Historical role of alpha-1-antitrypsin deficiency in respiratory and hepatic complications. Gene. 2016, 589(2): 118-122. |
|
[14] | Alam, S., Li, Z., Janciauskiene, S., Mahadeva, R. Oxidation of Z α1-antitrypsin by cigarette smoke induces polymerization: a novel mechanism of early-onset emphysema. Am J Respir Cell Mol Biol. 2011, 45(2): 261-269. |
|
[15] | Liu, J.R., Ye, Y.L., Lin, T.Y., Wang, Y.W., Peng, C.C. Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food Chem. 2013, 139(1-4): 938-943. |
|
[16] | Ahmed, S., Othman, N.H. Honey as a potential natural anticancer agent: A review of its mechanisms. Evid Based Complement Alternat Med. 2013, 2013: 829070. |
|
[17] | Sakač, M., Jovanov, P., Marić, A., Četojević-Simin, D., Novaković, A., Plavšić, D. et al. Antioxidative, Antibacterial and Antiproliferative Properties of Honey Types from the Western Balkans. Antioxidants (Basel). 2022, 11(6): 1120. |
|
[18] | Attia, W.Y., Gabry, M.S., El-Shaikh, K.A., Othman, G.A. The anti-tumor effect of bee honey in Ehrlich ascite tumor model of mice is coincided with stimulation of the immune cells. Egypt J Immunol. 2008, 15(2): 169-183. |
|
[19] | Khalil, I., Moniruzzaman, M., Boukraâ, L., Benhanifia, M., Islam, A., Islam, N. Physicochemical and antioxidant properties of Algerian honey. Molecules. 2012, 17(9): 11199-11215. |
|
[20] | Abuelgasim, H., Albury, C., Lee, J. Effectiveness of honey for symptomatic relief in upper respiratory tract infections: a systematic review and meta-analysis. BMJ Evid Based Med. 2021, 26(2): 57-64. |
|
[21] | Ranneh, Y., Akim, A.M., Hamid, H.A., Khazaai, H., Fadel, A., Zakaria, Z.A.et al.: Honey and its nutritional and anti-inflammatory value. BMC Complement Med Ther. 2021, 21(1): 30. |
|
[22] | Moniruzzaman, M., Khalil, M.I., Sulaiman, S.A., Gan, S.H. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement Altern Med. 2013, 13: 43. |
|
[23] | Wu, M.C., Wu, C.Y., Klaithin, K., Tiong, K.K., Peng, C.C. Effect of harvest time span on physicochemical properties, antioxidant, antimicrobial, and anti-inflammatory activities of Meliponinae honey. J Sci Food Agric. 2022, 102(13): 5750-5758. |
|
[24] | Chuttong, B., Chanbang, Y., Sringarm, K., Burgett. M. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 2016, 192: 149-155. |
|
[25] | Tuksitha, L., Chen, Y.S., Chen, Y., Wong, K., Peng, C.C. Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology. Journal of Asia-Pacific Entomology. 2018, 21(2): 563-570. |
|
[26] | Chou, W.M., Liao, H.C., Yang,Y.C., Peng, C.C. Evaluation of Honey Quality with Stored Time and Temperatures. Journal of Food and Nutrition Research, 2020, 8(10), 591-599. |
|
[27] | AOAC.: Office methods of analysis (15th edition) Association of Official Analytical Chemist Washington, DC, USA. 1990, 980. 23. |
|
[28] | Yang, L., Wang, W.C., Lung, S.C., Sun, Z., Chen, C., Chen, J.K. et al. Polycyclic aromatic hydrocarbons are associated with increased risk of chronic obstructive pulmonary disease during haze events in China. Sci Total Environ. 2017, 574: 1649-1658. |
|
[29] | Gilda, J.E., Gomes, A.V. Stain-Free total protein staining is a superior loading control to β-actin for Western blots. Anal Biochem, 2013, 440(2): 186-188. |
|
[30] | Carlos, A.U., David, H., Carmen, G. Role of honey polyphenols in health. J. Apiproduct. Apimedical. Sci. 2011, 3 (4): 141 – 159. |
|
[31] | Khalil, M.I., Alam, N., Moniruzzaman, M., Sulaiman, S.A., Gan, S.H. Phenolic acid composition and antioxidant properties of Malaysian honeys. J Food Sci. 2011, 76(6): C921-C928. |
|
[32] | Li, Z., Alam, S., Wang, J., Sandstrom, C.S., Janciauskiene, S., Mahadeva, R. Oxidized {alpha}1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema. Am J Physiol Lung Cell Mol Physiol. 2009, 297(2): L388-L400. |
|
[33] | Raweh, H.S.A., Badjah-Hadj-Ahmed, A.Y., Iqbal, J., Alqarni, A.S. Physicochemical Composition of Local and Imported Honeys Associated with Quality Standards. Foods, 2023, 12(11):2181. |
|
[34] | Wu, J., Han, B., Zhao, S., Zhong, Y., Han, W., Gao, J. et al. Bioactive characterization of multifloral honeys from Apis cerana cerana, Apis dorsata, and Lepidotrigona flavibasis. Food Res Int. 2022, 161: 111808. |
|
[35] | Fletcher, M.T., Hungerford, N.L., Webber, D., Carpinelli de Jesus, M., Zhang, J., Stone, I.S.J. et al. Stingless bee honey, a novel source of trehalulose: a biologically active disaccharide with health benefits. Sci Rep. 2020, 10(1): 12128. |
|
[36] | Codex Alimentarius Commission (2019) Standard for Honey CXS 2019, 12-1981. |
|
[37] | Oddo, L.P., Heard, T.A., Rodríguez-Malaver, A., Pérez, R.A., Fernández-Muiño, M., Sancho, M.T. et al. Composition and antioxidant activity of Trigona carbonaria honey from Australia. J Med Food. 2008, 11(4): 789-794. |
|
[38] | Shamsudin, S., Selamat, J., Sanny, M., Abd, S.B., Jambari, N.N., Mian, Z. et al. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int. J. Food Prop. 2019, 22(1): 238–263. |
|
[39] | Villacrés-Granda, I., Coello, D., Proaño, A. Ballesteros, I., Roubik, D.W., Jijón, G. et al. Honey quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT--Food Sci. Technol. 2021, 140(2021) 110737. |
|
[40] | Zaid, S.S.M., Ruslee, S.S., Mokhtar, M.H. Protective Roles of Honey in Reproductive Health: A Review. Molecules. 2021, 26(11): 3322. |
|
[41] | Eteraf-Oskouei, T., Najafi, M. Traditional and modern uses of natural honey in human diseases: a review. Iran J Basic Med Sci. 2013, 16(6): 731-742. |
|
[42] | Schramm, D.D., Karim, M., Schrader, H.R., Holt, R.R., Cardetti, M., Keen, C.L. Honey with high levels of antioxidants can provide protection to healthy human subjects. J. Agric. Food Chem. 2003, 51(6): 1732-1735. |
|
[43] | Sergiel, I., Pohl, P., Biesaga, M. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chem. 2014, 145: 404-408. |
|
[44] | Gheldof, N., Engeseth, N.J. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J Agric Food Chem. 2002, 50(10): 3050-3055. |
|
[45] | Rice-Evans, C.A., Miller, N.J., Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996, 20(7): 933-956. |
|
[46] | Becerril-Sánchez, A.L., Quintero-Salazar, B., Dublán-García, O. et al. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants (Basel). 2021, 10(11): 1700. |
|
[47] | Taormina, P.J. Niemira, B.A. Beuchat, L.R. Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int J Food Microbiol. 2001, 69(3): 217-225. |
|
[48] | Dżugan, M., Tomczyk, M., Sowa, P., Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules. 2018, 23(8): 2069. |
|
[49] | Feng, S., Gao, D., Liao, F., Zhou, F., Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 2016, 128: 67-74. |
|
[50] | Basith, S., Manavalan, B., Shin, T.H. et al., The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. Nanomaterials (Basel) 2022, 12(15): 2656. |
|
[51] | Jia, H., Liu, Y., Guo, D., He, W., Zhao, L., Xia, S. PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway. Environ Toxicol. 2021, 36(3): 298-307. |
|
[52] | Denker, B.M., Nigam, S.K. Molecular structure and assembly of the tight junction. Am J Physiol. 1998, 274(1): F1-F9. |
|
[53] | Taggart, C., Cervantes-Laurean, D., Kim, G., McElvaney, N.G., Wehr, N., Moss, J. et al., Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem. 2000, 275(35): 27258-27265. |
|
[54] | You, K., Xu, X., Fu, J., Xu, S., Yue, X., Yu, Z. et al., Hyperoxia disrupts pulmonary epithelial barrier in newborn rats via the deterioration of occludin and ZO-1. Respir Res. 2012, 13(1): 36. |
|
[55] | Zhang, Y.L., Li, Q.Q., Guo, W., Huang, Y., Yang, J. Effects of chronic ethanol ingestion on tight junction proteins and barrier function of alveolar epithelium in the rat. Shock. 2007, 28(2): 245-252. |
|