[1] | Di Ciaula, A.; Portincasa, P. Contrasting obesity: is something missing here? Internal and Emergency Medicine. 2024, 19, 265-269. |
|
[2] | Andolfi, C.; Fisichella, P.M. Epidemiology of Obesity and Associated Comorbidities. Journal of Laparoendoscopic & Advanced Surgical Techniques. 2018, 28, 919–924. |
|
[3] | O'Neill, S.; O'Driscoll, L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity Reviews. 2015, 16, 1-2. |
|
[4] | Suchacki, K.J.; Stimson, R.H. Nutritional Regulation of Human Brown Adipose Tissue. Nutrients. 2021, 13, 1748. |
|
[5] | Merlin, J.; Evans, B.A.; Dehvari, N.; Sato, M.; Bengtsson, T.; Hutchinson, D.S. Could Burning Fat Start with a Brite Spark? Pharmacological and Nutritional Ways to Promote Thermogenesis. Molecular Nutrition Food Res. 2016, 60, 18–42. |
|
[6] | Peirce, V.; Carobbio, S.; Vidal-Puig, A. The different shades of fat. Nature. 2014, 510, 76-83. |
|
[7] | Xue, S.W.; Lee, D.R.; Berry, D.C. Thermogenic adipose tissue in energy regulation and metabolic health. Frontiers in Endocrinology. 2023, 14, 1150059. |
|
[8] | Machado, S.A.; Pasquarelli-do-Nascimento, G.; Da Silva, D.S.; Farias, G.R.; De Oliveira Santos, I.; Baptista, L.B.; Magalhães, K.G. Browning of the White Adipose Tissue Regulation: New Insights into Nutritional and Metabolic Relevance in Health and Diseases. Nutr Metab (Lond). 2022, 19, 61. |
|
[9] | Harms, M.; Seale, P. Brown and Beige Fat: Development, Function and Therapeutic Potential. Nat Med. 2013, 19, 1252–1263. |
|
[10] | Yoneshiro, T.; Matsushita, M.; Saito, M. Translational Aspects of Brown Fat Activation by Food-Derived Stimulants. In Brown Adipose Tissue; Pfeifer, A., Klingenspor, M., Herzig, S., Eds.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, 2018; Vol. 251, pp. 359–379 ISBN 978-3-030-10512-9. |
|
[11] | Ono, K.; Tsukamoto-Yasui, M.; Hara-Kimura, Y.; Inoue, N.; Nogusa, Y.; Okabe, Y.; Nagashima, K.; Kato, F. Intragastric Administration of Capsiate, a Transient Receptor Potential Channel Agonist, Triggers Thermogenic Sympathetic Responses. Journal of Applied Physiology. 2011, 110, 789–798. |
|
[12] | Valente, A.; Carrillo, A.E.; Tzatzarakis, M.N.; Vakonaki, E.; Tsatsakis, A.M.; Kenny, G.P.; Koutedakis, Y.; Jamurtas, A.Z.; Flouris, A.D. The Absorption and Metabolism of a Single L-Menthol Oral versus Skin Administration: Effects on Thermogenesis and Metabolic Rate. Food and Chemical Toxicology. 2015, 86, 262–273. |
|
[13] | Li, W.; Li, Z.; Han, X.; Huang, D.; Lu, Y.; Yang, X. Enhancing the Hepatic Protective Effect of Genistein by Oral Administration with Stachyose in Mice with Chronic High Fructose Diet Consumption. Food Funct. 2016, 7, 2420–2430. |
|
[14] | Liu, G.; Bei, J.; Liang, L.; Yu, G.; Li, L.; Li, Q. Stachyose Improves Inflammation through Modulating Gut Microbiota of High‐Fat Diet/Streptozotocin‐Induced Type 2 Diabetes in Rats. Molecular Nutrition Food Res. 2018, 62, 1700954. |
|
[15] | Li, T.; Lu, X.; Yang, X. Stachyose-Enriched α-Galacto-Oligosaccharides Regulate Gut Microbiota and Relieve Constipation in Mice. J. Agric. Food Chem. 2013, 61, 11825–11831. |
|
[16] | Yan, T.; Liu, T.; Shi, L.; Yan, L.; Li, Z.; Zhang, X.; Dai, X.; Sun, X.; Yang, X. Integration of Microbial Metabolomics and Microbiomics Uncovers a Novel Mechanism Underlying the Antidiabetic Property of Stachyose. Journal of Functional Foods. 2023, 102, 105457. |
|
[17] | Liu, Y.; Li, T.; Alim, A.; Ren, D.; Zhao, Y.; Yang, X. Regulatory Effects of Stachyose on Colonic and Hepatic Inflammation, Gut Microbiota Dysbiosis, and Peripheral CD4+ T Cell Distribution Abnormality in High-Fat Diet-Fed Mice. J. Agric. Food Chem. 2019, 67, 11665–11674. |
|
[18] | Shepherd, P.R.; Gnudi, L.; Tozzo, E.; Yang, H.; Leach, F.; Kahn, B.B. Adipose Cell Hyperplasia and Enhanced Glucose Disposal in Transgenic Mice Overexpressing GLUT4 Selectively in Adipose Tissue. Journal of Biological Chemistry. 1993, 268, 22243–22246. |
|
[19] | Lee, S.G.; Lee, Y.J.; Jang, M.-H.; Kwon, T.R.; Nam, J.-O. Panax Ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats. Nutrients. 2017, 9, 999. |
|
[20] | Li, T.; Du, M.; Wang, H.; Mao, X. Milk Fat Globule Membrane and Its Component Phosphatidylcholine Induce Adipose Browning Both in Vivo and in Vitro. The Journal of Nutritional Biochemistry. 2020, 81, 108372. |
|
[21] | Yu, Z.K.; Wright, J.T.; Hausman, G.I. Preadipocyte Recruitment in Stromal Vascular Cultures After Depletion of Committed Preadipocytes by Immunocytotoxicity. Obesity Research. 1997, 5, 9–15. |
|
[22] | Tang, Q.-Q.; Otto, T.C.; Lane, M.D. Mitotic Clonal Expansion: A Synchronous Process Required for Adipogenesis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 44–49. |
|
[23] | Cornelius, P.; MacDougald, O.A.; Lane, M.D. Regulation of adipocyte development. Annual review of nutrition. 1994, 14(1): 99-129. |
|
[24] | MacDougald, O.A; Lane, M.D. Transcriptional regulation of gene expression during adipocyte differentiation. Annual review of biochemistry. 1995, 64(1): 345-373. |
|
[25] | Um, J.-H.; Park, S.-J.; Kang, H.; Yang, S.; Foretz, M.; McBurney, M.W.; Kim, M.K.; Viollet, B.; Chung, J.H. AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol. Diabetes. 2010, 59, 554–563. |
|
[26] | Taylor, S.M; Jones, P.A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979 Aug, 17(4):771-9. |
|
[27] | Bowers, R.R.; Kim, J.W.; Otto, T.C.; Lane, M.D. Stable Stem Cell Commitment to the Adipocyte Lineage by Inhibition of DNA Methylation: Role of the BMP-4 Gene. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 13022–13027. |
|
[28] | Reznikoff, C.A.; Brankow, D.W.; Heidelberger, C. Establishment and Characterization of a Cloned Line of C3H Mouse Embryo Cells Sensitive to Postconfluence Inhibition of Divisio. Cancer Research. 1973, 33 |
|
[29] | Jiang S., Li Q, Han S, et al. Study on the Anti‐inflammatory Effect of Stachyose by Inhibiting TLR4/NF‐κB Signaling Pathway in Vitro and in Vivo. Clinical and Experimental Pharmacology and Physiology. 2023, 50(7), 573-582. |
|
[30] | Huang, G.; Mao, J.; Ji, Z.; Ailati, A. Stachyose-Induced Apoptosis of Caco-2 Cells via the Caspase-Dependent Mitochondrial Pathway. Food Funct. 2015, 6, 765–771. |
|
[31] | Lee, J.-Y.; Kim, T.Y.; Kang, H.; Oh, J.; Park, J.W.; Kim, S.-C.; Kim, M.; Apostolidis, E.; Kim, Y.-C.; Kwon, Y.-I. Anti-Obesity and Anti-Adipogenic Effects of Chitosan Oligosaccharide (GO2KA1) in SD Rats and in 3T3-L1 Preadipocytes Models. Molecules. 2021, 26, 331. |
|
[32] | Muthukumaran, P.; Thiyagarajan, G.; Arun Babu, R.; Lakshmi, B.S. Raffinose from Costus Speciosus Attenuates Lipid Synthesis through Modulation of PPARs/SREBP1c and Improves Insulin Sensitivity through PI3K/AKT. Chemico-Biological Interactions. 2018, 284, 80–89. |
|
[33] | Liu, Y.; Chen, J.; Tan, Q.; Deng, X.; Tsai, P.-J.; Chen, P.-H.; Ye, M.; Guo, J.; Su, Z. Nondigestible Oligosaccharides with Anti-Obesity Effects. J. Agric. Food Chem. 2020, 68, 4–16. |
|
[34] | St‐Onge, M.; Salinardi, T.; Herron‐Rubin, K.; Black, R.M. A Weight‐Loss Diet Including Coffee‐Derived Mannooligosaccharides Enhances Adipose Tissue Loss in Overweight Men but Not Women. Obesity 2012, 20, 343–348. |
|
[35] | Zhao, C.; Wu, Y.; Liu, X.; Liu, B.; Cao, H.; Yu, H.; Sarker, S.D.; Nahar, L.; Xiao, J. Functional Properties, Structural Studies and Chemo-Enzymatic Synthesis of Oligosaccharides. Trends in Food Science & Technology. 2017, 66, 135–145. |
|
[36] | Kaaman, M.; Sparks, L.M.; Van Harmelen, V.; Smith, S.R.; Sjölin, E.; Dahlman, I.; Arner, P. Strong Association between Mitochondrial DNA Copy Number and Lipogenesis in Human White Adipose Tissue. Diabetologia. 2007, 50, 2526–2533. |
|
[37] | Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell. 1998, 92, 829–839. |
|
[38] | Jornayvaz, F.R.; Shulman, G.I. Regulation of Mitochondrial Biogenesis. Essays in Biochemistry. 2010, 47, 69–84. |
|
[39] | Lu, R.; Ji, H.; Chang, Z.; Su, S.; Yang, G. Mitochondrial Development and the Influence of Its Dysfunction during Rat Adipocyte Differentiation. Mol Biol Rep. 2010, 37, 2173–2182. |
|
[40] | Fazzari, M.; Audano, M.; Lunghi, G.; Di Biase, E.; Loberto, N.; Mauri, L.; Mitro, N.; Sonnino, S.; Chiricozzi, E. The Oligosaccharide Portion of Ganglioside GM1 Regulates Mitochondrial Function in Neuroblastoma Cells. Glycoconj J. 2020, 37, 293–306. |
|
[41] | Feng, W.; Liu, J.; Wang, S.; Hu, Y.; Pan, H.; Hu, T.; Guan, H.; Zhang, D.; Mao, Y. Alginate Oligosaccharide Alleviates D‐galactose‐induced Cardiac Ageing via Regulating Myocardial Mitochondria Function and Integrity in Mice. J Cellular Molecular Medi. 2021, 25, 7157–7168. |
|
[42] | Leu, S.-Y.; Tsai, Y.-C.; Chen, W.-C.; Hsu, C.-H.; Lee, Y.-M.; Cheng, P.-Y. Raspberry Ketone Induces Brown-like Adipocyte Formation through Suppression of Autophagy in Adipocytes and Adipose Tissue. The Journal of Nutritional Biochemistry. 2018, 56, 116–125. |
|
[43] | Sidossis, L.; Kajimura, S. Brown and Beige Fat in Humans: Thermogenic Adipocytes That Control Energy and Glucose Homeostasis. J. Clin. Invest. 2015, 125, 478–486. |
|
[44] | Seale, P.; Conroe, H.M.; Estall, J.; Kajimura, S.; Frontini, A.; Ishibashi, J.; Cohen, P.; Cinti, S.; Spiegelman, B.M. Prdm16 Determines the Thermogenic Program of Subcutaneous White Adipose Tissue in Mice. J. Clin. Invest. 2011, 121, 96–105. |
|
[45] | Seale, P.; Bjork, B.; Yang, W.; Kajimura, S.; Chin, S.; Kuang, S.; Scimè, A.; Devarakonda, S.; Conroe, H.M.; Erdjument-Bromage, H.; et al. PRDM16 Controls a Brown Fat/Skeletal Muscle Switch. Nature. 2008, 454, 961–967. |
|
[46] | Seale, P.; Kajimura, S.; Yang, W.; Chin, S.; Rohas, L.M.; Uldry, M.; Tavernier, G.; Langin, D.; Spiegelman, B.M. Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metabolism. 2007, 6, 38–54. |
|
[47] | Lun, W.; Zhou, J.; Bai, Y.; Che, Q.; Cao, H.; Guo, J.; Su, Z. Chitosan Oligosaccharide Activates Brown Adipose Tissue by Modulating the Gut Microbiota and Bile Acid Pathways Based on Faecal Microbiota Transplantation. Journal of Functional Foods. 2023, 108, 105731. |
|
[48] | Murakami, Y.; Ojima-Kato, T.; Saburi, W.; Mori, H.; Matsui, H.; Tanabe, S.; Suzuki, T. Supplemental Epilactose Prevents Metabolic Disorders through Uncoupling Protein-1 Induction in the Skeletal Muscle of Mice Fed High-Fat Diets. Br J Nutr. 2015, 114, 1774–1783. |
|
[49] | Price, N.L.; Gomes, A.P.; Ling, A.J.Y.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; et al. SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metabolism. 2012, 15, 675–690. |
|
[50] | Fu, Y.; Luo, N.; Klein, R.L.; Garvey, W.T. Adiponectin Promotes Adipocyte Differentiation, Insulin Sensitivity, and Lipid Accumulation. Journal of Lipid Research. 2005, 46, 1369–1379. |
|
[51] | Garcia, D.; Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular Cell. 2017, 66, 789–800. |
|
[52] | Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.-J.; et al. AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice. Cell Metabolism. 2011, 13, 376–388. |
|
[53] | Ruderman, N.B.; Julia Xu, X.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A Long-Standing Partnership? American Journal of Physiology-Endocrinology and Metabolism. 2010, 298, E751–E760. |
|
[54] | Wongkrasant, P.A.; Pongkorpsakol, P.; Ariyadamrongkwan, J.; Meesomboon, R.; Satitsri, S.; Pichyangkura, R.; Barrett, K.E.; Muanprasat, C. Prebiotic Fructo-Oligosaccharide Promotes Tight Junction Assembly in Intestinal Epithelial Cells via an AMPK-Dependent Pathway. Biomedicine & Pharmacotherapy. 2020, 129, 110415. |
|
[55] | Muanprasat, C.; Wongkrasant, P.; Satitsri, S.; Moonwiriyakit, A.; Pongkorpsakol, P.; Mattaveewong, T.; Pichyangkura, R.; Chatsudthipong, V. Activation of AMPK by Chitosan Oligosaccharide in Intestinal Epithelial Cells: Mechanism of Action and Potential Applications in Intestinal Disorders. Biochemical Pharmacology. 2015, 96, 225–236. |
|
[56] | Liu, X.; Chhipa, R.R.; Nakano, I.; Dasgupta, B. The AMPK Inhibitor Compound C Is a Potent AMPK-Independent Antiglioma Agent. Molecular Cancer Therapeutics. 2014, 13, 596–605. |
|
[57] | Vucicevic, L.; Misirkic, M.; Kristina, J.; Vilimanovich, U.; Sudar, E.; Isenovic, E.; Prica, M.; Harhaji-Trajkovic, L.; Kravic-Stevovic, T.; Vladimir, B.; et al. Compound C Induces Protective Autophagy in Cancer Cells through AMPK Inhibition-Independent Blockade of Akt/mTOR Pathway. Autophagy. 2011, 7, 40–50. |
|
[58] | Dasgupta, B.; Seibel, W. Compound C/Dorsomorphin: Its Use and Misuse as an AMPK Inhibitor. In AMPK; Neumann, D., Viollet, B., Eds.; Methods in Molecular Biology; Springer New York: New York, NY, 2018; Vol. 1732, pp. 195–202 ISBN 978-1-4939-7597-6. |
|