Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2025, 13(1), 34-42
DOI: 10.12691/jfnr-13-1-4
Open AccessArticle

Stachyose Induces Browning Process of White Adipocyte Partly via AMPK Pathway in Vitro

Zhongshan Xiao1, Zhenglin Chen2, Siru Chen2, Xiaoman Yang3 and Tianlin Wang2,

1Department of Pharmacy, Puyang Medical College, Puyang, Henan, China

2College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China

3Puyang People's Hospital, Puyang, Henan, China

Pub. Date: February 04, 2025

Cite this paper:
Zhongshan Xiao, Zhenglin Chen, Siru Chen, Xiaoman Yang and Tianlin Wang. Stachyose Induces Browning Process of White Adipocyte Partly via AMPK Pathway in Vitro. Journal of Food and Nutrition Research. 2025; 13(1):34-42. doi: 10.12691/jfnr-13-1-4

Abstract

The transformation of white to beige adipocytes is a promising method for the treatment of obesity. The aim of this study was to investigate the effect of stachyose on the regulation of adipocytes browning. The 3T3-L1 preadipocytes and C3H10T1/2 multipotent stem cells were differentiated into mature adipocytes with stachyose (0.5, 2.0 mg/mL). Results showed that the treatment of stachyose significantly decreased intracellular lipid accumulation and increased mitochondrial contents in 3T3-L1 adipocytes and C3H10T1/2 cells. Stachyose, which led to an increase of the relative numbers of UCP1-positive cells, has not only promoted the expression of browning-specific genes and proteins but also induced the phosphorylation of AMPK. Be-sides, the addition of AMPK inhibitor (compound C) has reduced the increase in the protein expression of thermogenesis-related markers induced by stachyose, suggesting that AMPK could affect the stachyose-mediated adipocyte browning process. These results indicate that stachyose has a probable effect on the regulation of adipogenesis and prevention of obesity.

Keywords:
Stachyose Adipocytes Browning UCP1 AMPK Obesity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Di Ciaula, A.; Portincasa, P. Contrasting obesity: is something missing here? Internal and Emergency Medicine. 2024, 19, 265-269.
 
[2]  Andolfi, C.; Fisichella, P.M. Epidemiology of Obesity and Associated Comorbidities. Journal of Laparoendoscopic & Advanced Surgical Techniques. 2018, 28, 919–924.
 
[3]  O'Neill, S.; O'Driscoll, L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity Reviews. 2015, 16, 1-2.
 
[4]  Suchacki, K.J.; Stimson, R.H. Nutritional Regulation of Human Brown Adipose Tissue. Nutrients. 2021, 13, 1748.
 
[5]  Merlin, J.; Evans, B.A.; Dehvari, N.; Sato, M.; Bengtsson, T.; Hutchinson, D.S. Could Burning Fat Start with a Brite Spark? Pharmacological and Nutritional Ways to Promote Thermogenesis. Molecular Nutrition Food Res. 2016, 60, 18–42.
 
[6]  Peirce, V.; Carobbio, S.; Vidal-Puig, A. The different shades of fat. Nature. 2014, 510, 76-83.
 
[7]  Xue, S.W.; Lee, D.R.; Berry, D.C. Thermogenic adipose tissue in energy regulation and metabolic health. Frontiers in Endocrinology. 2023, 14, 1150059.
 
[8]  Machado, S.A.; Pasquarelli-do-Nascimento, G.; Da Silva, D.S.; Farias, G.R.; De Oliveira Santos, I.; Baptista, L.B.; Magalhães, K.G. Browning of the White Adipose Tissue Regulation: New Insights into Nutritional and Metabolic Relevance in Health and Diseases. Nutr Metab (Lond). 2022, 19, 61.
 
[9]  Harms, M.; Seale, P. Brown and Beige Fat: Development, Function and Therapeutic Potential. Nat Med. 2013, 19, 1252–1263.
 
[10]  Yoneshiro, T.; Matsushita, M.; Saito, M. Translational Aspects of Brown Fat Activation by Food-Derived Stimulants. In Brown Adipose Tissue; Pfeifer, A., Klingenspor, M., Herzig, S., Eds.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, 2018; Vol. 251, pp. 359–379 ISBN 978-3-030-10512-9.
 
[11]  Ono, K.; Tsukamoto-Yasui, M.; Hara-Kimura, Y.; Inoue, N.; Nogusa, Y.; Okabe, Y.; Nagashima, K.; Kato, F. Intragastric Administration of Capsiate, a Transient Receptor Potential Channel Agonist, Triggers Thermogenic Sympathetic Responses. Journal of Applied Physiology. 2011, 110, 789–798.
 
[12]  Valente, A.; Carrillo, A.E.; Tzatzarakis, M.N.; Vakonaki, E.; Tsatsakis, A.M.; Kenny, G.P.; Koutedakis, Y.; Jamurtas, A.Z.; Flouris, A.D. The Absorption and Metabolism of a Single L-Menthol Oral versus Skin Administration: Effects on Thermogenesis and Metabolic Rate. Food and Chemical Toxicology. 2015, 86, 262–273.
 
[13]  Li, W.; Li, Z.; Han, X.; Huang, D.; Lu, Y.; Yang, X. Enhancing the Hepatic Protective Effect of Genistein by Oral Administration with Stachyose in Mice with Chronic High Fructose Diet Consumption. Food Funct. 2016, 7, 2420–2430.
 
[14]  Liu, G.; Bei, J.; Liang, L.; Yu, G.; Li, L.; Li, Q. Stachyose Improves Inflammation through Modulating Gut Microbiota of High‐Fat Diet/Streptozotocin‐Induced Type 2 Diabetes in Rats. Molecular Nutrition Food Res. 2018, 62, 1700954.
 
[15]  Li, T.; Lu, X.; Yang, X. Stachyose-Enriched α-Galacto-Oligosaccharides Regulate Gut Microbiota and Relieve Constipation in Mice. J. Agric. Food Chem. 2013, 61, 11825–11831.
 
[16]  Yan, T.; Liu, T.; Shi, L.; Yan, L.; Li, Z.; Zhang, X.; Dai, X.; Sun, X.; Yang, X. Integration of Microbial Metabolomics and Microbiomics Uncovers a Novel Mechanism Underlying the Antidiabetic Property of Stachyose. Journal of Functional Foods. 2023, 102, 105457.
 
[17]  Liu, Y.; Li, T.; Alim, A.; Ren, D.; Zhao, Y.; Yang, X. Regulatory Effects of Stachyose on Colonic and Hepatic Inflammation, Gut Microbiota Dysbiosis, and Peripheral CD4+ T Cell Distribution Abnormality in High-Fat Diet-Fed Mice. J. Agric. Food Chem. 2019, 67, 11665–11674.
 
[18]  Shepherd, P.R.; Gnudi, L.; Tozzo, E.; Yang, H.; Leach, F.; Kahn, B.B. Adipose Cell Hyperplasia and Enhanced Glucose Disposal in Transgenic Mice Overexpressing GLUT4 Selectively in Adipose Tissue. Journal of Biological Chemistry. 1993, 268, 22243–22246.
 
[19]  Lee, S.G.; Lee, Y.J.; Jang, M.-H.; Kwon, T.R.; Nam, J.-O. Panax Ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats. Nutrients. 2017, 9, 999.
 
[20]  Li, T.; Du, M.; Wang, H.; Mao, X. Milk Fat Globule Membrane and Its Component Phosphatidylcholine Induce Adipose Browning Both in Vivo and in Vitro. The Journal of Nutritional Biochemistry. 2020, 81, 108372.
 
[21]  Yu, Z.K.; Wright, J.T.; Hausman, G.I. Preadipocyte Recruitment in Stromal Vascular Cultures After Depletion of Committed Preadipocytes by Immunocytotoxicity. Obesity Research. 1997, 5, 9–15.
 
[22]  Tang, Q.-Q.; Otto, T.C.; Lane, M.D. Mitotic Clonal Expansion: A Synchronous Process Required for Adipogenesis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 44–49.
 
[23]  Cornelius, P.; MacDougald, O.A.; Lane, M.D. Regulation of adipocyte development. Annual review of nutrition. 1994, 14(1): 99-129.
 
[24]  MacDougald, O.A; Lane, M.D. Transcriptional regulation of gene expression during adipocyte differentiation. Annual review of biochemistry. 1995, 64(1): 345-373.
 
[25]  Um, J.-H.; Park, S.-J.; Kang, H.; Yang, S.; Foretz, M.; McBurney, M.W.; Kim, M.K.; Viollet, B.; Chung, J.H. AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol. Diabetes. 2010, 59, 554–563.
 
[26]  Taylor, S.M; Jones, P.A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979 Aug, 17(4):771-9.
 
[27]  Bowers, R.R.; Kim, J.W.; Otto, T.C.; Lane, M.D. Stable Stem Cell Commitment to the Adipocyte Lineage by Inhibition of DNA Methylation: Role of the BMP-4 Gene. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 13022–13027.
 
[28]  Reznikoff, C.A.; Brankow, D.W.; Heidelberger, C. Establishment and Characterization of a Cloned Line of C3H Mouse Embryo Cells Sensitive to Postconfluence Inhibition of Divisio. Cancer Research. 1973, 33
 
[29]  Jiang S., Li Q, Han S, et al. Study on the Anti‐inflammatory Effect of Stachyose by Inhibiting TLR4/NF‐κB Signaling Pathway in Vitro and in Vivo. Clinical and Experimental Pharmacology and Physiology. 2023, 50(7), 573-582.
 
[30]  Huang, G.; Mao, J.; Ji, Z.; Ailati, A. Stachyose-Induced Apoptosis of Caco-2 Cells via the Caspase-Dependent Mitochondrial Pathway. Food Funct. 2015, 6, 765–771.
 
[31]  Lee, J.-Y.; Kim, T.Y.; Kang, H.; Oh, J.; Park, J.W.; Kim, S.-C.; Kim, M.; Apostolidis, E.; Kim, Y.-C.; Kwon, Y.-I. Anti-Obesity and Anti-Adipogenic Effects of Chitosan Oligosaccharide (GO2KA1) in SD Rats and in 3T3-L1 Preadipocytes Models. Molecules. 2021, 26, 331.
 
[32]  Muthukumaran, P.; Thiyagarajan, G.; Arun Babu, R.; Lakshmi, B.S. Raffinose from Costus Speciosus Attenuates Lipid Synthesis through Modulation of PPARs/SREBP1c and Improves Insulin Sensitivity through PI3K/AKT. Chemico-Biological Interactions. 2018, 284, 80–89.
 
[33]  Liu, Y.; Chen, J.; Tan, Q.; Deng, X.; Tsai, P.-J.; Chen, P.-H.; Ye, M.; Guo, J.; Su, Z. Nondigestible Oligosaccharides with Anti-Obesity Effects. J. Agric. Food Chem. 2020, 68, 4–16.
 
[34]  St‐Onge, M.; Salinardi, T.; Herron‐Rubin, K.; Black, R.M. A Weight‐Loss Diet Including Coffee‐Derived Mannooligosaccharides Enhances Adipose Tissue Loss in Overweight Men but Not Women. Obesity 2012, 20, 343–348.
 
[35]  Zhao, C.; Wu, Y.; Liu, X.; Liu, B.; Cao, H.; Yu, H.; Sarker, S.D.; Nahar, L.; Xiao, J. Functional Properties, Structural Studies and Chemo-Enzymatic Synthesis of Oligosaccharides. Trends in Food Science & Technology. 2017, 66, 135–145.
 
[36]  Kaaman, M.; Sparks, L.M.; Van Harmelen, V.; Smith, S.R.; Sjölin, E.; Dahlman, I.; Arner, P. Strong Association between Mitochondrial DNA Copy Number and Lipogenesis in Human White Adipose Tissue. Diabetologia. 2007, 50, 2526–2533.
 
[37]  Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell. 1998, 92, 829–839.
 
[38]  Jornayvaz, F.R.; Shulman, G.I. Regulation of Mitochondrial Biogenesis. Essays in Biochemistry. 2010, 47, 69–84.
 
[39]  Lu, R.; Ji, H.; Chang, Z.; Su, S.; Yang, G. Mitochondrial Development and the Influence of Its Dysfunction during Rat Adipocyte Differentiation. Mol Biol Rep. 2010, 37, 2173–2182.
 
[40]  Fazzari, M.; Audano, M.; Lunghi, G.; Di Biase, E.; Loberto, N.; Mauri, L.; Mitro, N.; Sonnino, S.; Chiricozzi, E. The Oligosaccharide Portion of Ganglioside GM1 Regulates Mitochondrial Function in Neuroblastoma Cells. Glycoconj J. 2020, 37, 293–306.
 
[41]  Feng, W.; Liu, J.; Wang, S.; Hu, Y.; Pan, H.; Hu, T.; Guan, H.; Zhang, D.; Mao, Y. Alginate Oligosaccharide Alleviates D‐galactose‐induced Cardiac Ageing via Regulating Myocardial Mitochondria Function and Integrity in Mice. J Cellular Molecular Medi. 2021, 25, 7157–7168.
 
[42]  Leu, S.-Y.; Tsai, Y.-C.; Chen, W.-C.; Hsu, C.-H.; Lee, Y.-M.; Cheng, P.-Y. Raspberry Ketone Induces Brown-like Adipocyte Formation through Suppression of Autophagy in Adipocytes and Adipose Tissue. The Journal of Nutritional Biochemistry. 2018, 56, 116–125.
 
[43]  Sidossis, L.; Kajimura, S. Brown and Beige Fat in Humans: Thermogenic Adipocytes That Control Energy and Glucose Homeostasis. J. Clin. Invest. 2015, 125, 478–486.
 
[44]  Seale, P.; Conroe, H.M.; Estall, J.; Kajimura, S.; Frontini, A.; Ishibashi, J.; Cohen, P.; Cinti, S.; Spiegelman, B.M. Prdm16 Determines the Thermogenic Program of Subcutaneous White Adipose Tissue in Mice. J. Clin. Invest. 2011, 121, 96–105.
 
[45]  Seale, P.; Bjork, B.; Yang, W.; Kajimura, S.; Chin, S.; Kuang, S.; Scimè, A.; Devarakonda, S.; Conroe, H.M.; Erdjument-Bromage, H.; et al. PRDM16 Controls a Brown Fat/Skeletal Muscle Switch. Nature. 2008, 454, 961–967.
 
[46]  Seale, P.; Kajimura, S.; Yang, W.; Chin, S.; Rohas, L.M.; Uldry, M.; Tavernier, G.; Langin, D.; Spiegelman, B.M. Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metabolism. 2007, 6, 38–54.
 
[47]  Lun, W.; Zhou, J.; Bai, Y.; Che, Q.; Cao, H.; Guo, J.; Su, Z. Chitosan Oligosaccharide Activates Brown Adipose Tissue by Modulating the Gut Microbiota and Bile Acid Pathways Based on Faecal Microbiota Transplantation. Journal of Functional Foods. 2023, 108, 105731.
 
[48]  Murakami, Y.; Ojima-Kato, T.; Saburi, W.; Mori, H.; Matsui, H.; Tanabe, S.; Suzuki, T. Supplemental Epilactose Prevents Metabolic Disorders through Uncoupling Protein-1 Induction in the Skeletal Muscle of Mice Fed High-Fat Diets. Br J Nutr. 2015, 114, 1774–1783.
 
[49]  Price, N.L.; Gomes, A.P.; Ling, A.J.Y.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; et al. SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metabolism. 2012, 15, 675–690.
 
[50]  Fu, Y.; Luo, N.; Klein, R.L.; Garvey, W.T. Adiponectin Promotes Adipocyte Differentiation, Insulin Sensitivity, and Lipid Accumulation. Journal of Lipid Research. 2005, 46, 1369–1379.
 
[51]  Garcia, D.; Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular Cell. 2017, 66, 789–800.
 
[52]  Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.-J.; et al. AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice. Cell Metabolism. 2011, 13, 376–388.
 
[53]  Ruderman, N.B.; Julia Xu, X.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A Long-Standing Partnership? American Journal of Physiology-Endocrinology and Metabolism. 2010, 298, E751–E760.
 
[54]  Wongkrasant, P.A.; Pongkorpsakol, P.; Ariyadamrongkwan, J.; Meesomboon, R.; Satitsri, S.; Pichyangkura, R.; Barrett, K.E.; Muanprasat, C. Prebiotic Fructo-Oligosaccharide Promotes Tight Junction Assembly in Intestinal Epithelial Cells via an AMPK-Dependent Pathway. Biomedicine & Pharmacotherapy. 2020, 129, 110415.
 
[55]  Muanprasat, C.; Wongkrasant, P.; Satitsri, S.; Moonwiriyakit, A.; Pongkorpsakol, P.; Mattaveewong, T.; Pichyangkura, R.; Chatsudthipong, V. Activation of AMPK by Chitosan Oligosaccharide in Intestinal Epithelial Cells: Mechanism of Action and Potential Applications in Intestinal Disorders. Biochemical Pharmacology. 2015, 96, 225–236.
 
[56]  Liu, X.; Chhipa, R.R.; Nakano, I.; Dasgupta, B. The AMPK Inhibitor Compound C Is a Potent AMPK-Independent Antiglioma Agent. Molecular Cancer Therapeutics. 2014, 13, 596–605.
 
[57]  Vucicevic, L.; Misirkic, M.; Kristina, J.; Vilimanovich, U.; Sudar, E.; Isenovic, E.; Prica, M.; Harhaji-Trajkovic, L.; Kravic-Stevovic, T.; Vladimir, B.; et al. Compound C Induces Protective Autophagy in Cancer Cells through AMPK Inhibition-Independent Blockade of Akt/mTOR Pathway. Autophagy. 2011, 7, 40–50.
 
[58]  Dasgupta, B.; Seibel, W. Compound C/Dorsomorphin: Its Use and Misuse as an AMPK Inhibitor. In AMPK; Neumann, D., Viollet, B., Eds.; Methods in Molecular Biology; Springer New York: New York, NY, 2018; Vol. 1732, pp. 195–202 ISBN 978-1-4939-7597-6.