Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2024, 12(4), 182-195
DOI: 10.12691/jfnr-12-4-3
Open AccessArticle

Polygonatum Sibiricum Polysaccharides Alleviate CCl4-Induced Acute Liver Injury in Mice Via Reducing Inflammation and Oxidative Stress

Jiujiu Li1, 2, Ting Wang1, Fuding Zhou1, Changchun Xiao2, Zhengxiang Liu1, Jinchuan Yu1, Di Liang3, Guangjun Wang4, Changsheng Shao5, Peng Wang5, and Wenjun Chen1,

1Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China

2Hefei Center for Disease Control and Prevention, Hefei, 230041, Anhui, China

3Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei 230001, Anhui, China

4School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China

5CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China

Pub. Date: April 17, 2024

Cite this paper:
Jiujiu Li, Ting Wang, Fuding Zhou, Changchun Xiao, Zhengxiang Liu, Jinchuan Yu, Di Liang, Guangjun Wang, Changsheng Shao, Peng Wang and Wenjun Chen. Polygonatum Sibiricum Polysaccharides Alleviate CCl4-Induced Acute Liver Injury in Mice Via Reducing Inflammation and Oxidative Stress. Journal of Food and Nutrition Research. 2024; 12(4):182-195. doi: 10.12691/jfnr-12-4-3

Abstract

From liver injury to hepatocirrhosis and hepatocarcinoma, irreversible progression correlates closely with inflammation. Polygonatum sibiricum has been reported to be beneficial to the liver, but its regulation of inflammation in liver injury has not been determined. Thus, we hypothesize that Polygonatum sibiricum polysaccharides (PSP) play a protective role against acute liver injury by inhibiting inflammation and explore the underlying mechanism. The concentration and constituents of polysaccharides in PSP were identified first. We found that, like bifendate, PSP pretreatment significantly ameliorated acute CCl4 exposure-induced liver injury and associated biomarkers. Meanwhile, PSP markedly attenuated inflammation and macrophage proinflammatory polarization both in the livers of CCl4-treated mice and LPS-treated Raw264.7 cells. Mechanistic investigation showed that PSP pretreatment markedly attenuated the activation of JAK2/STAT3/NF-κB signaling pathway in liver injury. Our findings demonstrated a novel understanding of PSP-mediated macrophage proinflammatory polarization in acute injury, which provides new knowledge regarding its application in acute liver injury treatment.

Keywords:
Polygonatum sibiricum macrophage M1 polarization acute liver injury inflammation JAK2/STAT3

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  E. Trefts, M. Gannon, D. H. Wasserman. The liver.J. Curr Biol. 27(2017)R1147-r51.
 
[2]  L. Gravitz. Liver cancer.J. Nature. 516(2014)S1.
 
[3]  H. Devarbhavi, S. K. Asrani, J. P. Arab, et al. Global burden of liver disease: 2023 update.J. J Hepatol. 2023).
 
[4]  F. S. Wang, J. G. Fan, Z. Zhang, et al. The global burden of liver disease: The major impact of china.J. Hepatology. 60(2014)2099-108.
 
[5]  B. L. Woolbright. Inflammation: Cause or consequence of chronic cholestatic liver injury.J. Food Chem Toxicol. 137(2020)111133.
 
[6]  C. Matyas, G. Haskó, L. Liaudet, et al. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications.J. Nat Rev Cardiol. 18(2021)117-35.
 
[7]  M. L. Meizlish, R. A. Franklin, X. Zhou, et al. Tissue homeostasis and inflammation.J. Annu Rev Immunol. 39(2021)557-81.
 
[8]  C. Brenner, L. Galluzzi, O. Kepp, et al. Decoding cell death signals in liver inflammation.J. J Hepatol. 59(2013)583-94.
 
[9]  J. Wan, M. Benkdane, F. Teixeira-Clerc, et al. M2 kupffer cells promote m1 kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease.J. Hepatology. 59(2014)130-42.
 
[10]  Z. Abdullah and P. A. Knolle, Liver macrophages in healthy and diseased liver. Pflugers Archiv : European Journal of Physiology. 469 (2017) 553-560.
 
[11]  R. A. Isidro and C. B. Appleyard, Colonic macrophage polarization in homeostasis, inflammation, and cancer. American Journal of Physiology. Gastrointestinal and Liver Physiology. 311 (2016) G59-G73.
 
[12]  Y. Ni, F. Zhuge, M. Nagashimada, et al., Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeostasis. Nutrients. 8 (2016).
 
[13]  A. Louvet, F. Teixeira-Clerc, M.-N. Chobert, et al., Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology (Baltimore, Md.). 54 (2011) 1217-1226.
 
[14]  D. Lissner, M. Schumann, A. Batra, et al., Monocyte and M1 Macrophage-induced Barrier Defect Contributes to Chronic Intestinal Inflammation in IBD. Inflammatory Bowel Diseases. 21 (2015) 1297-1305.
 
[15]  G. Wang, Y. Fu, J. Li, et al. Aqueous extract of polygonatum sibiricum ameliorates ethanol-induced mice liver injury via regulation of the nrf2/are pathway.J. J Food Biochem. 45(2021)e13537.
 
[16]  M. Li, Y. Liu, H. Zhang, et al. Anti-cancer potential of polysaccharide extracted from polygonatum sibiricum on hepg2 cells via cell cycle arrest and apoptosis.J. Front Nutr. 9(2022)938290.
 
[17]  H. Zhang, X. T. Cai, Q. H. Tian, et al. Microwave-assisted degradation of polysaccharide from polygonatum sibiricum and antioxidant activity.J. J Food Sci. 84(2019)754-61.
 
[18]  X. Zhu, W. Wu, X. Chen, et al. Protective effects of polygonatum sibiricum polysaccharide on acute heart failure in rats 1.J. Acta Cir Bras. 33(2018)868-78.
 
[19]  X. Zhu, Q. Li, F. Lu, et al. Antiatherosclerotic potential of rhizoma polygonati polysaccharide in hyperlipidemia-induced atherosclerotic hamsters.J. Drug Res (Stuttg). 65(2015)479-83.
 
[20]  C. Han, T. Sun, Y. Liu, et al. Protective effect of polygonatum sibiricum polysaccharides on gentamicin-induced acute kidney injury in rats via inhibiting p38 mapk/atf2 pathway.J. Int J Biol Macromol. 151(2020)595-601.
 
[21]  J. Liu, T. Li, H. Chen, et al. Structural characterization and osteogenic activity in vitro of novel polysaccharides from the rhizome of polygonatum sibiricum.J. Food Funct. 12(2021)6626-36.
 
[22]  F. Shen, Z. Song, P. Xie, et al. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage.J. J Ethnopharmacol. 275(2021)114164.
 
[23]  T. Y. Liu, L. L. Zhao, S. B. Chen, et al. Polygonatum sibiricum polysaccharides prevent lps-induced acute lung injury by inhibiting inflammation via the tlr4/myd88/nf-κb pathway.J. Exp Ther Med. 20(2020)3733-9.
 
[24]  Popa-Wagner, S. Mitran, S. Sivanesan, et al. Ros and brain diseases: The good, the bad, and the ugly.J. Oxid Med Cell Longev. 2013(2013)963520.
 
[25]  W. Ma, S. Wei, W. Peng, et al. Antioxidant effect of polygonatum sibiricum polysaccharides in d-galactose-induced heart aging mice.J. Biomed Res Int. 2021(2021)6688855.
 
[26]  Y. C. Liu, X. B. Zou, Y. F. Chai, et al. Macrophage polarization in inflammatory diseases.J. Int J Biol Sci. 10(2014)520-9.
 
[27]  P. J. Murray. Macrophage polarization.J. Annu Rev Physiol. 79(2017)541-66.
 
[28]  M. S. Copur. Sorafenib in advanced hepatocellular carcinoma.J. N Engl J Med. 359(2008)2498; author reply -9.
 
[29]  G. Spinzi, S. Paggi. Sorafenib in advanced hepatocellular carcinoma.J. N Engl J Med. 359(2008)2497-8; author reply 8-9.
 
[30]  P. Marcellin and B. K. Kutala, Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver International : Official Journal of the International Association For the Study of the Liver. 38 Suppl 1 (2018) 2-6.
 
[31]  Q. Wu, J. Chen, X. Hu, et al. Amphiregulin alleviated concanavalin a-induced acute liver injury via il-22.J. Immunopharmacol Immunotoxicol. 42(2020)473-83.
 
[32]  Q. Li, Y. Tan, S. Chen, et al. Irisin alleviates lps-induced liver injury and inflammation through inhibition of nlrp3 inflammasome and nf-κb signaling.J. J Recept Signal Transduct Res. 41(2021)294-303.
 
[33]  S. Torres, A. Baulies, N. Insausti-Urkia, et al. Endoplasmic reticulum stress-induced upregulation of stard1 promotes acetaminophen-induced acute liver failure.J. Gastroenterology. 157(2019)552-68.
 
[34]  M. Koneru, B. D. Sahu, S. Gudem, et al. Polydatin alleviates alcohol-induced acute liver injury in mice: Relevance of matrix metalloproteinases (mmps) and hepatic antioxidants.J. Phytomedicine. 27(2017)23-32.
 
[35]  Szilamka, J. Menyhárt, J. Somogyi. Involvement of spinal mechanisms in ccl4-induced acute liver injury.J. Acta Med Acad Sci Hung. 31(1974)1-8.
 
[36]  M. Yamamoto. (liver injury).J. Ryoikibetsu Shokogun Shirizu. 1995)487-92.
 
[37]  Mao, H. Zhan, F. Meng, et al. Costunolide protects against alcohol-induced liver injury by regulating gut microbiota, oxidative stress and attenuating inflammation in vivo and in vitro.J. Phytother Res. 36(2022)1268-83.
 
[38]  H. H. Yu, Y. X. Qiu, B. Li, et al. Kadsura heteroclita stem ethanol extract protects against carbon tetrachloride-induced liver injury in mice via suppression of oxidative stress, inflammation, and apoptosis.J. J Ethnopharmacol. 267(2021)113496.
 
[39]  H. Guo, J. Sun, D. Li, et al. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation.J. Biomed Pharmacother. 112(2019)108704.
 
[40]  C. T. Wu, J. S. Deng, W. C. Huang, et al. Salvianolic acid c against acetaminophen-induced acute liver injury by attenuating inflammation, oxidative stress, and apoptosis through inhibition of the keap1/nrf2/ho-1 signaling.J. Oxid Med Cell Longev. 2019(2019)9056845.
 
[41]  S. Pérez, S. Rius-Pérez. Macrophage polarization and reprogramming in acute inflammation: A redox perspective.J. Antioxidants (Basel). 11(2022).
 
[42]  Xu, X. Yan, Y. Zhao, et al. Macrophage polarization mediated by mitochondrial dysfunction induces adipose tissue inflammation in obesity.J. Int J Mol Sci. 23(2022).
 
[43]  J. Zhou, L. Li, M. Qu, et al. Electroacupuncture pretreatment protects septic rats from acute lung injury by relieving inflammation and regulating macrophage polarization.J. Acupunct Med. 41(2023)175-82.
 
[44]  Ma, Y. Q. Chen, Z. J. You, et al. Intermittent fasting attenuates lipopolysaccharide-induced acute lung injury in mice by modulating macrophage polarization.J. J Nutr Biochem. 110(2022)109133.
 
[45]  Rahman, M. Pervin, M. Kuramochi, et al. M1/m2-macrophage polarization-based hepatotoxicity in d-galactosamine-induced acute liver injury in rats.J. Toxicol Pathol. 46(2018)764-76.
 
[46]  R. Liu, J. Cui, Y. Sun, et al. Autophagy deficiency promotes m1 macrophage polarization to exacerbate acute liver injury via atg5 repression during aging.J. Cell Death Discov. 7(2021)397.
 
[47]  W. Gong, H. Zhu, L. Lu, et al. A benzenediamine analog fc-99 drives m2 macrophage polarization and alleviates lipopolysaccharide- (lps-) induced liver injury.J. Mediators Inflamm. 2019(2019)7823069.
 
[48]  C. Liu, F. Hu, G. Jiao, et al. Dental pulp stem cell-derived exosomes suppress m1 macrophage polarization through the ros-mapk-nfκb p65 signaling pathway after spinal cord injury.J. J Nanobiotechnology. 20(2022)65.
 
[49]  Y. K. Lin, C. T. Yeh, K. T. Kuo, et al. Apolipoprotein (a)/lipoprotein(a)-induced oxidative-inflammatory α7-nachr/p38 mapk/il-6/rhoa-gtp signaling axis and m1 macrophage polarization modulate inflammation-associated development of coronary artery spasm.J. Oxid Med Cell Longev. 2022(2022)9964689.
 
[50]  K. Li, Q. Li. Linc00323 mediates the role of m1 macrophage polarization in diabetic nephropathy through pi3k/akt signaling pathway.J. Hum Immunol. 82(2021)960-7.
 
[51]  Song, L. Han, F. F. Chen, et al. Adipocyte-derived exosomes carrying sonic hedgehog mediate m1 macrophage polarization-induced insulin resistance via ptch and pi3k pathways.J. Cell Physiol Biochem. 48(2018)1416-32.
 
[52]  B. Zhong, J. Du, F. Liu, et al. Activation of the mtor/hif-1α/vegf axis promotes m1 macrophage polarization in non-eosinophilic chronic rhinosinusitis with nasal polyps.J. Allergy. 77(2022)643-6.
 
[53]  M. Shi, Z. Lin, L. Ye, et al. Estrogen receptor-regulated socs3 modulation via jak2/stat3 pathway is involved in bpf-induced m1 polarization of macrophages.J. Toxicology. 433-434(2020)152404.
 
[54]  S. Huang, H. Yuan, W. Li, et al. Polygonatum sibiricum polysaccharides protect against mpp-induced neurotoxicity via the akt/mtor and nrf2 pathways.J. Oxid Med Cell Longev. 2021(2021)8843899.