[1] | E. Trefts, M. Gannon, D. H. Wasserman. The liver.J. Curr Biol. 27(2017)R1147-r51. |
|
[2] | L. Gravitz. Liver cancer.J. Nature. 516(2014)S1. |
|
[3] | H. Devarbhavi, S. K. Asrani, J. P. Arab, et al. Global burden of liver disease: 2023 update.J. J Hepatol. 2023). |
|
[4] | F. S. Wang, J. G. Fan, Z. Zhang, et al. The global burden of liver disease: The major impact of china.J. Hepatology. 60(2014)2099-108. |
|
[5] | B. L. Woolbright. Inflammation: Cause or consequence of chronic cholestatic liver injury.J. Food Chem Toxicol. 137(2020)111133. |
|
[6] | C. Matyas, G. Haskó, L. Liaudet, et al. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications.J. Nat Rev Cardiol. 18(2021)117-35. |
|
[7] | M. L. Meizlish, R. A. Franklin, X. Zhou, et al. Tissue homeostasis and inflammation.J. Annu Rev Immunol. 39(2021)557-81. |
|
[8] | C. Brenner, L. Galluzzi, O. Kepp, et al. Decoding cell death signals in liver inflammation.J. J Hepatol. 59(2013)583-94. |
|
[9] | J. Wan, M. Benkdane, F. Teixeira-Clerc, et al. M2 kupffer cells promote m1 kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease.J. Hepatology. 59(2014)130-42. |
|
[10] | Z. Abdullah and P. A. Knolle, Liver macrophages in healthy and diseased liver. Pflugers Archiv : European Journal of Physiology. 469 (2017) 553-560. |
|
[11] | R. A. Isidro and C. B. Appleyard, Colonic macrophage polarization in homeostasis, inflammation, and cancer. American Journal of Physiology. Gastrointestinal and Liver Physiology. 311 (2016) G59-G73. |
|
[12] | Y. Ni, F. Zhuge, M. Nagashimada, et al., Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeostasis. Nutrients. 8 (2016). |
|
[13] | A. Louvet, F. Teixeira-Clerc, M.-N. Chobert, et al., Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology (Baltimore, Md.). 54 (2011) 1217-1226. |
|
[14] | D. Lissner, M. Schumann, A. Batra, et al., Monocyte and M1 Macrophage-induced Barrier Defect Contributes to Chronic Intestinal Inflammation in IBD. Inflammatory Bowel Diseases. 21 (2015) 1297-1305. |
|
[15] | G. Wang, Y. Fu, J. Li, et al. Aqueous extract of polygonatum sibiricum ameliorates ethanol-induced mice liver injury via regulation of the nrf2/are pathway.J. J Food Biochem. 45(2021)e13537. |
|
[16] | M. Li, Y. Liu, H. Zhang, et al. Anti-cancer potential of polysaccharide extracted from polygonatum sibiricum on hepg2 cells via cell cycle arrest and apoptosis.J. Front Nutr. 9(2022)938290. |
|
[17] | H. Zhang, X. T. Cai, Q. H. Tian, et al. Microwave-assisted degradation of polysaccharide from polygonatum sibiricum and antioxidant activity.J. J Food Sci. 84(2019)754-61. |
|
[18] | X. Zhu, W. Wu, X. Chen, et al. Protective effects of polygonatum sibiricum polysaccharide on acute heart failure in rats 1.J. Acta Cir Bras. 33(2018)868-78. |
|
[19] | X. Zhu, Q. Li, F. Lu, et al. Antiatherosclerotic potential of rhizoma polygonati polysaccharide in hyperlipidemia-induced atherosclerotic hamsters.J. Drug Res (Stuttg). 65(2015)479-83. |
|
[20] | C. Han, T. Sun, Y. Liu, et al. Protective effect of polygonatum sibiricum polysaccharides on gentamicin-induced acute kidney injury in rats via inhibiting p38 mapk/atf2 pathway.J. Int J Biol Macromol. 151(2020)595-601. |
|
[21] | J. Liu, T. Li, H. Chen, et al. Structural characterization and osteogenic activity in vitro of novel polysaccharides from the rhizome of polygonatum sibiricum.J. Food Funct. 12(2021)6626-36. |
|
[22] | F. Shen, Z. Song, P. Xie, et al. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage.J. J Ethnopharmacol. 275(2021)114164. |
|
[23] | T. Y. Liu, L. L. Zhao, S. B. Chen, et al. Polygonatum sibiricum polysaccharides prevent lps-induced acute lung injury by inhibiting inflammation via the tlr4/myd88/nf-κb pathway.J. Exp Ther Med. 20(2020)3733-9. |
|
[24] | Popa-Wagner, S. Mitran, S. Sivanesan, et al. Ros and brain diseases: The good, the bad, and the ugly.J. Oxid Med Cell Longev. 2013(2013)963520. |
|
[25] | W. Ma, S. Wei, W. Peng, et al. Antioxidant effect of polygonatum sibiricum polysaccharides in d-galactose-induced heart aging mice.J. Biomed Res Int. 2021(2021)6688855. |
|
[26] | Y. C. Liu, X. B. Zou, Y. F. Chai, et al. Macrophage polarization in inflammatory diseases.J. Int J Biol Sci. 10(2014)520-9. |
|
[27] | P. J. Murray. Macrophage polarization.J. Annu Rev Physiol. 79(2017)541-66. |
|
[28] | M. S. Copur. Sorafenib in advanced hepatocellular carcinoma.J. N Engl J Med. 359(2008)2498; author reply -9. |
|
[29] | G. Spinzi, S. Paggi. Sorafenib in advanced hepatocellular carcinoma.J. N Engl J Med. 359(2008)2497-8; author reply 8-9. |
|
[30] | P. Marcellin and B. K. Kutala, Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver International : Official Journal of the International Association For the Study of the Liver. 38 Suppl 1 (2018) 2-6. |
|
[31] | Q. Wu, J. Chen, X. Hu, et al. Amphiregulin alleviated concanavalin a-induced acute liver injury via il-22.J. Immunopharmacol Immunotoxicol. 42(2020)473-83. |
|
[32] | Q. Li, Y. Tan, S. Chen, et al. Irisin alleviates lps-induced liver injury and inflammation through inhibition of nlrp3 inflammasome and nf-κb signaling.J. J Recept Signal Transduct Res. 41(2021)294-303. |
|
[33] | S. Torres, A. Baulies, N. Insausti-Urkia, et al. Endoplasmic reticulum stress-induced upregulation of stard1 promotes acetaminophen-induced acute liver failure.J. Gastroenterology. 157(2019)552-68. |
|
[34] | M. Koneru, B. D. Sahu, S. Gudem, et al. Polydatin alleviates alcohol-induced acute liver injury in mice: Relevance of matrix metalloproteinases (mmps) and hepatic antioxidants.J. Phytomedicine. 27(2017)23-32. |
|
[35] | Szilamka, J. Menyhárt, J. Somogyi. Involvement of spinal mechanisms in ccl4-induced acute liver injury.J. Acta Med Acad Sci Hung. 31(1974)1-8. |
|
[36] | M. Yamamoto. (liver injury).J. Ryoikibetsu Shokogun Shirizu. 1995)487-92. |
|
[37] | Mao, H. Zhan, F. Meng, et al. Costunolide protects against alcohol-induced liver injury by regulating gut microbiota, oxidative stress and attenuating inflammation in vivo and in vitro.J. Phytother Res. 36(2022)1268-83. |
|
[38] | H. H. Yu, Y. X. Qiu, B. Li, et al. Kadsura heteroclita stem ethanol extract protects against carbon tetrachloride-induced liver injury in mice via suppression of oxidative stress, inflammation, and apoptosis.J. J Ethnopharmacol. 267(2021)113496. |
|
[39] | H. Guo, J. Sun, D. Li, et al. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation.J. Biomed Pharmacother. 112(2019)108704. |
|
[40] | C. T. Wu, J. S. Deng, W. C. Huang, et al. Salvianolic acid c against acetaminophen-induced acute liver injury by attenuating inflammation, oxidative stress, and apoptosis through inhibition of the keap1/nrf2/ho-1 signaling.J. Oxid Med Cell Longev. 2019(2019)9056845. |
|
[41] | S. Pérez, S. Rius-Pérez. Macrophage polarization and reprogramming in acute inflammation: A redox perspective.J. Antioxidants (Basel). 11(2022). |
|
[42] | Xu, X. Yan, Y. Zhao, et al. Macrophage polarization mediated by mitochondrial dysfunction induces adipose tissue inflammation in obesity.J. Int J Mol Sci. 23(2022). |
|
[43] | J. Zhou, L. Li, M. Qu, et al. Electroacupuncture pretreatment protects septic rats from acute lung injury by relieving inflammation and regulating macrophage polarization.J. Acupunct Med. 41(2023)175-82. |
|
[44] | Ma, Y. Q. Chen, Z. J. You, et al. Intermittent fasting attenuates lipopolysaccharide-induced acute lung injury in mice by modulating macrophage polarization.J. J Nutr Biochem. 110(2022)109133. |
|
[45] | Rahman, M. Pervin, M. Kuramochi, et al. M1/m2-macrophage polarization-based hepatotoxicity in d-galactosamine-induced acute liver injury in rats.J. Toxicol Pathol. 46(2018)764-76. |
|
[46] | R. Liu, J. Cui, Y. Sun, et al. Autophagy deficiency promotes m1 macrophage polarization to exacerbate acute liver injury via atg5 repression during aging.J. Cell Death Discov. 7(2021)397. |
|
[47] | W. Gong, H. Zhu, L. Lu, et al. A benzenediamine analog fc-99 drives m2 macrophage polarization and alleviates lipopolysaccharide- (lps-) induced liver injury.J. Mediators Inflamm. 2019(2019)7823069. |
|
[48] | C. Liu, F. Hu, G. Jiao, et al. Dental pulp stem cell-derived exosomes suppress m1 macrophage polarization through the ros-mapk-nfκb p65 signaling pathway after spinal cord injury.J. J Nanobiotechnology. 20(2022)65. |
|
[49] | Y. K. Lin, C. T. Yeh, K. T. Kuo, et al. Apolipoprotein (a)/lipoprotein(a)-induced oxidative-inflammatory α7-nachr/p38 mapk/il-6/rhoa-gtp signaling axis and m1 macrophage polarization modulate inflammation-associated development of coronary artery spasm.J. Oxid Med Cell Longev. 2022(2022)9964689. |
|
[50] | K. Li, Q. Li. Linc00323 mediates the role of m1 macrophage polarization in diabetic nephropathy through pi3k/akt signaling pathway.J. Hum Immunol. 82(2021)960-7. |
|
[51] | Song, L. Han, F. F. Chen, et al. Adipocyte-derived exosomes carrying sonic hedgehog mediate m1 macrophage polarization-induced insulin resistance via ptch and pi3k pathways.J. Cell Physiol Biochem. 48(2018)1416-32. |
|
[52] | B. Zhong, J. Du, F. Liu, et al. Activation of the mtor/hif-1α/vegf axis promotes m1 macrophage polarization in non-eosinophilic chronic rhinosinusitis with nasal polyps.J. Allergy. 77(2022)643-6. |
|
[53] | M. Shi, Z. Lin, L. Ye, et al. Estrogen receptor-regulated socs3 modulation via jak2/stat3 pathway is involved in bpf-induced m1 polarization of macrophages.J. Toxicology. 433-434(2020)152404. |
|
[54] | S. Huang, H. Yuan, W. Li, et al. Polygonatum sibiricum polysaccharides protect against mpp-induced neurotoxicity via the akt/mtor and nrf2 pathways.J. Oxid Med Cell Longev. 2021(2021)8843899. |
|