Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2024, 12(4), 168-172
DOI: 10.12691/jfnr-12-4-1
Open AccessArticle

Banana Intake Reduces Oral Cavity-Derived Bacteria in the Gut Microbiota

Kanako Sugawara1, , Ailing Hu1, Takuji Yamaguchi1, Masahiro Tabuchi1, Yasushi Ikarashi1 and Hiroyuki Kobayashi1

1Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan

Pub. Date: April 06, 2024

Cite this paper:
Kanako Sugawara, Ailing Hu, Takuji Yamaguchi, Masahiro Tabuchi, Yasushi Ikarashi and Hiroyuki Kobayashi. Banana Intake Reduces Oral Cavity-Derived Bacteria in the Gut Microbiota. Journal of Food and Nutrition Research. 2024; 12(4):168-172. doi: 10.12691/jfnr-12-4-1


Bananas, rich in prebiotics, dietary fibre, oligosaccharides, vitamins and minerals, have positive effects on gut health. However, their impact on oral cavity-derived gut microbiota and the intestinal environment remains unclear. This study investigated changes of the gut microenvironment and oral cavity-derived gut microbiota populations induced by banana intake. Twenty-six healthy women were instructed to consume two bananas per day for 2 weeks. We measured urinary indoxyl sulfate levels (a general gut microenvironment index) and the proportion of oral microbiota species within the gut microbiota before and after the 2-week banana consumption period. Banana intake significantly reduced urinary indoxyl sulfate levels. Additionally, participants aged < 40 years showed decreased indole levels, while no significant change occurred in those aged ≥ 40 years. The total number of bacterial species decreased due to banana intake. However, oral microbiota and Porphyromonas spp. populations remained unchanged in all participants. Nevertheless, participants with a high urinary indoxyl sulfate levels before banana intake showed slightly reduced oral microbiota and Porphyromonas spp. prevalence after banana intake, along with significantly lower urinary indoxyl sulfate levels. Therefore, the decreases in urinary indoxyl sulfate and the prevalence of oral cavity-derived bacteria and Porphyromonas spp. indicates the regulatory activity of bananas on gut microbiota.

oral bacteria gut microbiota Porphyromonas spp indoxyl sulfate banana intake

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 5


[1]  Sommer F., Bäckhed F.: The gut microbiota--masters of host development and physiology. Nature Reviews. Microbiology, 11, 2013, pp. 227-38.
[2]  Caselli E., Fabbri C., D'Accolti M., Soffritti I., Bassi C., Mazzacane S., Franchi M.: Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiology, 20, 2020, p. 120.
[3]  Chigasaki O., Takeuchi Y., Aoki A., Sasaki Y., Mizutani K., Aoyama N., Ikeda Y., Gokyu M., Umeda M., Ishikawa I., Izumi Y.: A cross-sectional study on the periodontal status and prevalence of red complex periodontal pathogens in a Japanese population. Journal of Oral Science, 60, 2018, pp. 293-303.
[4]  Leng Y., Hu Q., Ling Q., Yao X., Liu M., Chen J., Yan Z., Dai Q.: Periodontal disease is associated with the risk of cardiovascular disease independent of sex: A meta-analysis. Frontiers in Cardiovascular Medicine, 10, 2023, p. 1114927.
[5]  Zardawi F., Gul S., Abdulkareem A., Sha A., Yates J.: Association between periodontal disease and atherosclerotic cardiovascular diseases: revisited. Frontiers in Cardiovascular Medicine, 7, 2020, p. 625579.
[6]  Van Dyke T.E., Kholy K.E., Ishai A., Takx R.A.P., Mezue K., Abohashem S.M., Ali A., Yuan N., Hsue P., Osborne M.T., Tawakol A.: Inflammation of the periodontium associates with risk of future cardiovascular events. Journal of Periodontology, 92, 2021, pp. 348-58.
[7]  Stewart R., West M.: Increasing evidence for an association between periodontitis and cardiovascular disease. Circulation, 133, 2016, pp. 549-51.
[8]  Bezamat M.: An updated review on the link between oral infections and atherosclerotic cardiovascular disease with focus on phenomics. Frontiers in Physiology, 13, 2022, p. 1101398.
[9]  Duran-Pinedo A., Solbiati J., Teles F., Teles R., Zang Y., Frias-Lopez J.: Long-term dynamics of the human oral microbiome during clinical disease progression. BMC Biology, 19, 2021, p. 240.
[10]  Gualtero D.F., Lafaurie G.I., Buitrago D.M., Castillo Y., Vargas-Sanchez P.K., Castillo D.M.: Oral microbiome mediated inflammation, a potential inductor of vascular diseases: a comprehensive review. Frontiers in Cardiovascular Medicine, 10, 2023, p. 1250263.
[11]  Ide M., Harris M., Stevens A., Sussams R., Hopkins V., Culliford D., Fuller J., Ibbett P., Raybould R., Thomas R., Puenter U., Teeling J., Perry V.H., Holmes C.: Periodontitis and cognitive decline in Alzheimer's disease. PLOS ONE, 11, 2016, p. e0151081.
[12]  Grusovin M.G.: The treatment of periodontal diseases in elderly patients. In: Mersel A., (Ed.): Oral rehabilitation for compromised and elderly patients. Berlin: Springer, 2019.
[13]  Cipelli M., da Silva E.M., Câmara N.O.S.: Gut microbiota resilience mechanisms against pathogen infection and its role in inflammatory bowel disease. Curr Clin Micro Rpt, 10, 2023, pp. 187–97.
[14]  Khaledi M., Poureslamfar B., Alsaab H.O., Tafaghodi S., Hjazi A., Singh R., Alawadi A.H., Alsaalamy A., Qasim Q.A., Sameni F.: The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. Annals of Microbiology, 74, 2024, p. 1.
[15]  Afzaal M., Saeed F., Shah Y.A., Hussain M., Rabail R., Socol C.T., Hassoun A., Pateiro M., Lorenzo J.M., Rusu A.V., Aadil R.M.: Human gut microbiota in health and disease: unveiling the relationship. Frontiers in Microbiology, 13, 2022, p. 999001.
[16]  Chen X., Wang N., Wang J., Liao B., Cheng L., Ren B.: The interactions between oral-gut axis microbiota and Helicobacter pylori. Frontiers in Cellular & Infection Microbiology, 12, 2022, p. 914418.
[17]  Khor B., Snow M., Herrman E., Ray N., Mansukhani K., Patel K.A., Said-Al-Naief N., Maier T., Machida C.A.: Interconnections between the oral and gut microbiomes: reversal of microbial dysbiosis and the balance between systemic health and disease. Microorganisms, 9, 2021, p. 496.
[18]  Sedghi L.M., Bacino M., Kapila Y.L.: Periodontal disease: the good, the bad, and the unknown. Frontiers in Cellular & Infection Microbiology, 11, 2021, p. 766944.
[19]  Paul O., Arora P., Mayer M., Chatterjee S.: Inflammation in periodontal disease: possible link to vascular disease. Frontiers in Physiology, 11, 2020, p. 609614.
[20]  Olsen I., Yamazaki K.: Can oral bacteria affect the microbiome of the gut? Journal of Oral Microbiology, 11, 2019, p. 1586422.
[21]  Ericsson A.C., Franklin C.L.: The gut microbiome of laboratory mice: considerations and best practices for translational research. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 32, 2021, pp. 239-50.
[22]  Li X., Liu Y., Yang X., Li C., Song Z.: The oral microbiota: community composition, influencing factors, pathogenesis, and interventions. Frontiers in Microbiology, 13, 2022, p. 895537.
[23]  Liu Y., Wang J., Wu C.: Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Frontiers in Nutrition, 8, 2021, p. 634897.
[24]  Li H.Y., Zhou D.D., Gan R.Y., Huang S.Y., Zhao C.N., Shang A., Xu X.Y., Li H.B.: Effects and mechanisms of probiotics, prebiotics, Synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients, 13, 2021, p. 3211.
[25]  Tian D.D., Xu X.Q., Peng Q., Zhang Y.W., Zhang P.B., Qiao Y., Shi B.: Effects of banana powder (Musa acuminata Colla) on the composition of human fecal microbiota and metabolic output using in vitro fermentation. Journal of Food Science, 85, 2020, pp. 2554-64.
[26]  Li P., Li M., Song Y., Huang X., Wu T., Xu Z.Z., Lu H.: Green banana flour contributes to gut microbiota recovery and improves colonic barrier integrity in mice following antibiotic perturbation. Frontiers in Nutrition, 9, 2022, p. 832848.
[27]  Baek G.H., Kim Y.J., Lee Y., Jung S.C., Seo H.W., Kim J.S.: Prebiotic potential of green banana flour: impact on gut microbiota modulation and microbial metabolic activity in a murine model. Frontiers in Nutrition, 10, 2023, p. 1249358.
[28]  Kobayashi A., Hu A., Yamaguchi T., Tabuchi M., Ikarashi Y., Kobayashi H.: Banana intake relieves the stress of daily life in healthy adult volunteers: an open, randomized, parallel-group comparative study. Journal of Food & Nutrition Research, 10, 2022, pp. 841-9.
[29]  Ministry of Education, Culture, Sports, Science and Technology: Japan, Standard Tables of Food Composition in Japan-2020 (8th revised edition).
[30]  Yoshida N., Watanabe S., Yamasaki H., Sakuma H., Takeda A.K., Yamashita T., Hirata K.I.: Average gut flora in healthy Japanese subjects stratified by age and body mass index. Biosci Microbiota Food Health, 41, 2022, pp. 45-53.
[31]  Dahlen G., Fejerskov O., Manji F.: Current concepts and an alternative perspective on periodontal disease. BMC Oral Health, 20, 2020, p. 235.
[32]  Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J.: The placenta harbors a unique microbiome. Science Translational Medicine, 6, 2014, p. 237ra65.