Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2022, 10(11), 820-832
DOI: 10.12691/jfnr-10-11-9
Open AccessArticle

Potential Protective Effect of Bromelain and Pineapple Extract on Gamma Irradiated Female Rats: A Study of Oxidative Stress, Apoptosis, and Hormonal Changes

Dalia Fouad1, 2, , Amani Riyadh1, Esraa Shuker1, Mai Elobeid1 and Promy Virk1

1Zoology Department, College of Science, King Saud University, PO 22452- Riyadh 11495, Saudi Arabia

2Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt

Pub. Date: November 22, 2022

Cite this paper:
Dalia Fouad, Amani Riyadh, Esraa Shuker, Mai Elobeid and Promy Virk. Potential Protective Effect of Bromelain and Pineapple Extract on Gamma Irradiated Female Rats: A Study of Oxidative Stress, Apoptosis, and Hormonal Changes. Journal of Food and Nutrition Research. 2022; 10(11):820-832. doi: 10.12691/jfnr-10-11-9

Abstract

In the study, the pure bromelain and its natural source in pineapple extracts were examined for their protective effects on ovary function in Albino rats exposed to gamma radiation. Female Albino rats (n = 90, prepubertal, 90-140 g each) were equally divided into six experimental groups: G1 was provided with distilled water, G2 exposed to a single dose of gamma radiation (8.3 Gy), G3 was orally administered with 7 mg/kg body weight bromelain for a week, G4 resemble G3 followed by exposure to irradiation, G5 was orally administered 30 mg/kg body weight Ananas comosus for a week, and G6 resembled G5 followed by exposure to irradiation. Rats were sacrificed one-hour, 24h, and 4 days post irradiation and histopathological alterations, granulosa cell viability and oxidative stress biomarkers and apoptosis were evaluated in the ovaries. The irradiated group experienced increased FSH and MDA levels with a reduction in E2 levels and enhanced CAT and SOD expression with marked increase in apoptosis. Treatment with both A. comosus extract and bromelain alleviated the adverse effects induced by the radiation.

Keywords:
pineapple extract bromelain oxidative stress hormonal changes gamma radiation ovaries

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  F. El Ghissassi, R. Baan, K. Straif, Y. Grosse, B. Secretan, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, C. Freeman, L. Galichet, V. Cogliano, WHO International Agency for Research on Cancer Monograph Working Group, A review of human carcinogens—part D: radiation, Lancet Oncol. 10 (2009) 751-752.
 
[2]  G. W. Dolphin, Radiation and health hazards, Environ. Med. 26 (2013).
 
[3]  K. J. Awosan, M. Ibrahim, S. A. Saidu, S. M. Ma’aji, M. Danfulani, E. U. Yunusa, D. B. Ikhuenbor, T. A. Ige, Knowledge of radiation hazards, radiation protection practices and clinical profile of health workers in a teaching hospital in Northern Nigeria, J. Clin. Diagn. Res. 10 (2016), LC07-12.
 
[4]  M. Najafi, R. Fardid, G. Hadadi, M. Fardid, The mechanisms of radiation-induced bystander effect, J. Biomed. Phys. Eng. 4 (2014) 163-172.
 
[5]  S. Puukila, J. A. Lemon, S. J. Lees, T. C. Tai, D. R. Boreham, N. Khaper, Impact of ionizing radiation on the cardiovascular system: a review, Radiat. Res. 188 (2017) 539-546.
 
[6]  J. R. Hubenak, Q. Zhang, C. D. Branch, S. J. Kronowitz, Mechanisms of injury to normal tissue after radiotherapy: a review, Plast. Reconstr. Surg. 133 (2014) 49e-56e.
 
[7]  M. Kececi, M. Akpolat, K. Gulle, E. Gencer, A. Sahbaz, Evaluation of preventive effect of shilajit on radiation-induced apoptosis on ovaries, Arch. Gynecol. Obstet. 293 (2016) 1255-1262.
 
[8]  M. Schieber, N. S. Chandel, ROS Function in redox signaling and oxidative stress, Curr. Biol. 24 (2014) R453-R462.
 
[9]  J. A. Tribowo, M. H. Arizal, M. Nashrullah, A. R. Aditama, D. G. Utama, Oxidative stress of cadmium-induced ovarian rat toxicity, Int. J. Chem. Eng. Appl. 5 (2014) 254-258.
 
[10]  F. Ciani, N. Cocchia, D. D’Angelo, S. Tafuri, Influence of ROS on ovarian functions. In:Tech. Pesek K, ed., New Discoveries in Embryology; (2015): 41-73.
 
[11]  M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol. 39 (2007) 44-84.
 
[12]  Y. F. Mahran, E. El-Demerdash, A. S. Nada, R. N. El-Naga, A. A. Ali, A. B. Abdel-Naim, Growth hormone ameliorates the radiotherapy-induced ovarian follicular loss in rats: impact on oxidative stress, apoptosis and IGF-1/IGF-1R axis, PLOS ONE 10 (2015) e0140055.
 
[13]  J. S. Stroud, D. Mutch, J. Rader, M. Powell, P. H. Thaker, P. W. Grigsby, Effects of cancer treatment on ovarian function, Fertil. Steril. 92 (2009) 417-427.
 
[14]  J. R. Jensen, D. E. Morbeck, C. C. Coddington, Fertility preservation, Mayo Clin. Proc. 86 (2011) 45-49.
 
[15]  A. J. Hsueh, P. B. Jones, E. Y. Adashi, C. Wang, L. Z. Zhuang, T. H. Welsh, Intraovarian mechanisms in the hormonal control of granulosa cell differentiation in rats, J. Reprod. Fertil. 69 (1983) 325-342.
 
[16]  B. A. White, S. Porterfield, The female reproductive system. In: Endocr. Reprod. Physiol. (p. 215-238.e3) (2013).
 
[17]  R. S. Said, A. S. Nada, E. El-Demerdash, Sodium selenite improves folliculogenesis in radiation-induced ovarian failure: A mechanistic approach, PLOS ONE 7 (2012) e50928.
 
[18]  M. A. Hossain, S. M. M. Rahman, Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple, Food Res. Int. 44 (2011) 672-676.
 
[19]  O. Y. Okafor, O. l. Erukainure, J. A. Ajiboye, R. O. Adejobi, F. O. Owolabi, S. B. Kosoko, Modulatory effect of pineapple peel extract on lipid peroxidation, catalase activity and hepatic biomarker levels in blood plasma of alcohol-induced oxidative stressed rats, Asian Pac. J. Trop. Biomed. 1 (2011) 12-14.
 
[20]  M. Siddiq, J. Ahmed, M. G. Lobo, F. Ozadali, Tropical and subtropical fruits. In: Siddiq M, ed., Tropical and Subtropical Fruits: Postharvest Physiology, Processing and Packaging. Oxford, UK: Wiley-Blackwell; (2012).
 
[21]  O. Nwankudu, S. Ijioma, C. Nwosu, In vitro investigation of fresh juices of ripe ananas comosus (pineapple), Carica papaya (pawpaw) and Citrullus vulgaris (water melon) for uterine contractile properties in non-pregnant rats. Intrnational Journal of Zoology and Research, IJZR - in Vitro Investigation of Fresh. http://tjprc.org/publishpapers/--1402039562-Zoology; (2014). Nigeria: IJIOMA.pdf 4:79–84.
 
[22]  M. V. Eberhardt, C. Y. Lee, R. H. Liu, Antioxidant activity of fresh apples, Nature 405 (2000) 903-904.
 
[23]  O. Oyawoye, A. A. Abdel Gadir, A. Garner, N. Constantinovici, C. Perrett, P. Hardiman, Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome, Hum. Reprod. 18 (2003) 2270-2274.
 
[24]  S. Ketnawa, P. Chaiwut, S. Rawdkuen, Pineapple wastes: A potential source for bromelain extraction, Food Bioprod. Process. 90 (2012) 385-391.
 
[25]  S. Alam, D. Katiyar, R. Goel, A. Vats, A. Mittal, Role of herbals in cancer management, J. Phytopharmacol. 2 (2013) 46-51.
 
[26]  K. Chobotova, A. B. Vernallis, F. A. A. Majid, Bromelain’s activity and potential as an anti-cancer agent: current evidence and perspectives, Cancer Lett. 290 (2010) 148-156.
 
[27]  P. A. G. Soares, A. F. M. Vaz, M. T. S. Correia, A. Pessoa, M. G. Carneiro-da-Cunha, Purification of bromelain from pineapple wastes by ethanol precipitation, Sep. Purif. Technol. 98 (2012) 389-395.
 
[28]  S. J. Taussig, S. Batkin, Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update, J. Ethnopharmacol. 22 (1988) 191-203.
 
[29]  S. Agarwal, B. Chaudhary, R. Bist, Bacoside A and bromelain relieve dichlorvos induced changes in oxidative responses in mice serum, Chem. Biol. Interact. 254 (2016) 173-178.
 
[30]  A. I. Aiyegbusi, O. O. Olabiyi, F. I. O. Duru, C. C. Noronha, A. O. Okanlawon, A comparative study of the effects of bromelain and fresh pineapple juice on the early phase of healing in acute crush Achilles tendon injury, J. Med. Food 14 (2011) 348-352.
 
[31]  K. S. Louis, A. C. Siegel, Cell viability analysis using trypan blue: manual and automated methods. In: Mammalian Cell Viablity: method and protocols, Methods in Molecular Biology, Methods Mol Biol. Springer Science 740 (2011) 7-12.
 
[32]  D. Cadena-Herrera, J. E. Esparza-De Lara, N. D. Ramírez-Ibañez, C. A. López-Morales, N. O. Pérez, L. F. Flores-Ortiz, E. Medina-Rivero, Validation of three viable-cell counting methods: Manual, semi-automated, and automated [manual], Biotechnol. Rep. 7 (2015) 9-16.
 
[33]  K. V. Subbarao, J. S. Richardson, L. C. Ang, Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro, J. Neurochem. 55 (1990) 342-345.
 
[34]  J. Cadet, S. Bellon, T. Douki, S. Frelon, D. Gasparutto D, et al. Radiationinduced DNA damage: formation, measurement, and biochemical features. J Environ Pathol Toxicol Oncol. 23 (2004) 33-43.
 
[35]  M.A. Bedaiwy, T. Falcone, M.S. Mohamed, A.A. Aleem, R.K. Sharma, et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril. 82 (2004) 593-600.
 
[36]  N. Jancar, A. N. Kopitar, A. Ihan, I. Virant Klun, E. V. Bokal. Effect of apoptosis and reactive oxygen species production in human granulosa cells on oocyte fertilization and blastocyst development. J Assist Reprod Genet 24: (2007). 91-97.
 
[37]  Y. K. Lee, H. H. Chang, W. R. Kim, J. K. Kim, Y. D. Yoon, Effects of gamma-radiation on ovarian follicles, Arh. Hig. Rada. Toksikol. 49 (1998) 147-153.
 
[38]  J. B. Bruning, Y. Shamoo. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1. Structure 12 (2004) 2209-2219.
 
[39]  M. B. Kastan, Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71 (1992) 587-597.
 
[40]  E. Niki, Lipid peroxidation: physiological levels and dual biological effects, Free Radic. Biol. Med. 47 (2009) 469-484.
 
[41]  J. Navarro, E. Obrador, J. A. Pellicer, M. Aseni, J. Vina, et al. Blood glutathione as an index of radiation-induced oxidative stress in mice and humans. Free Radic Biol Med 22 (1997) 1203-1209.
 
[42]  M.G. Bilbao, M.P. Di Yorio, R.A. Galarza, C.L. Varone, A.G. Faletti. Regulation of the ovarian oxidative status by leptin during the ovulatory process in rats. Reproduction. 149 (2015) 357-66. Epub 2015 Jan 19.
 
[43]  A. Kheradmand, M. Alirezaei, M. Birjandi, Ghrelin promotes antioxidant enzyme activity and reduces lipid peroxidation in the rat ovary, Regul. Pept. 162 (2010) 84-89.
 
[44]  V. I. Lushchak, Glutathione homeostasis and functions: potential targets for medical interventions, J. Amino Acids 2012 (2012) 736837.
 
[45]  E. Cassano, L. Tosto, M. Balestrieri, L. Zicarelli, P. Abrescia. Antioxidant defense in the follicular fluid of water buffalo. Cell Physiol Biochem 9 (1999) 106-116.
 
[46]  V. Simon, C. Avet, V. Grange-Messent, R. Wargnier, C. Denoyelle, A. Pierre, J. Dairou, J. M. Dupret, J. Cohen-Tannoudji. Carbon Black Nanoparticles Inhibit Aromatase Expression and Estradiol Secretion in Human Granulosa Cells Through the ERK1/2 Pathway. Endocrinology. 158 (2017) 3200-3211.
 
[47]  L. E. Feinendegen. Reactive oxygen species in cell responses to toxic agents. Hum Exp Toxicol 21 (2002) 85-90.
 
[48]  K. England, T. G. Cotter. Direct oxidative modifications of signaling proteins in mammalian cells and their effects on apoptosis. Redox Rep 10 (2005) 237-245.
 
[49]  A. Amsterdam, N. Selvaraj. Control of differentiation, transformation, and apoptosis in granulosa cells by oncogenes, oncoviruses, and tumor suppressor genes. Endocr Rev 18 (1997) 435-461.
 
[50]  K. Yacobi, A. Wojtowicz, A. Tsafriri, A. Gross. Gonadotropins enhance caspase-3 and -7 activity and apoptosis in the theca-interstitial cells of rat preovulatory follicles in culture. Endocrinology 145 (2004) 1943-1951.
 
[51]  E. Markstrom, E. Svensson, R. Shao, B. Svanberg, H. Billig. Survival factors regulating ovarian apoptosis – dependence on follicle differentiation. Reproduction 123 (2002) 23-30.
 
[52]  J. H. Zhang, M. Xu, DNA fragmentation in apoptosis, Cell Res. 10 (2000) 205-211.