Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2020, 8(9), 506-515
DOI: 10.12691/jfnr-8-9-7
Open AccessArticle

Chemical Constituents and Biological Functions of Different Extracts of Millettia speciosa Leaves

Nasiruddin1, 2, Minghui Ji1, 2, Zhangxin Yu1, 2, Guangying Chen1, 2, , Tariq Masood3 and Funing Ma4

1Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571127, P. R. China

2Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, P. R. China

3Department of Agricultural Chemistry, The University of Agriculture, Peshawar Pakistan

4Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China

Pub. Date: September 24, 2020

Cite this paper:
Nasiruddin, Minghui Ji, Zhangxin Yu, Guangying Chen, Tariq Masood and Funing Ma. Chemical Constituents and Biological Functions of Different Extracts of Millettia speciosa Leaves. Journal of Food and Nutrition Research. 2020; 8(9):506-515. doi: 10.12691/jfnr-8-9-7


Millettia speciosa, a traditional Chinese folk medicine, used as immunity enhancer and anti-bronchitis. The study was proposed to investigate phytocomponents and pharmacological activities (antityrosinase, sunscreen and anticancer) of the different fractions of M. speciosa leaves. The sample was extracted with solvents of increasing polarity i.e. petroleum ether (PE), ethyl acetate (EtOAc), methanol (MeOH) and the total flavonoid content for each fraction was determined. The GC-MS analysis revealed various important bioactive compounds. The identified major compounds included beta sitosterol (12.039%), (Z)-9-octadecenamide (6.299%) and gamma sitosterol (4.910%). The highest flavonoid content was recorded for the PE extract i.e. 47.50 ± 0.40%. The PE extract showed significant antityrosinase activity (70.30 ± 0.90 %) with IC50 0.035 mg/ml followed by the MeOH extract i.e. 66.50 ± 1.20% with IC50 0.039 mg/ml. The highest sunscreen activity was noted for the EtOAc extract by observing maximum absorbance value (1.518 ± 0.49) in UVA region followed by 1.214 ± 0.46 in UVB zone. The highest cytotoxicity (29.45 ±1.17% viability) towards MCF-7 breast cancer cells line was noted for the PE extract with IC50 6.73 µg/ml. Overall, our study revealed the presence of potential bioactive compounds for each extract that exhibited significant therapeutic activities and therefore validate the importance of M. speciosa leaves as a source of natural medicine.

Millettia speciosa GC-MS analysis bioactivities flavonoid sunscreen antityrosinase anticancer

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Parthasarathy, S., Juzaili, A., Ramanathan, S., Ismail, S., Sasidharan, S., Said, M. I. M and Mansor, S.M. (2009). Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (Rubiaceae Family) leaves. Molecules. 14, 3964-3974.
[2]  Mariana, V., Eduardo, M. C., Sara, S and Manuela, P. (2020). Impact of plant extracts upon human health: A review. Crit. Rev. Food Sci. Nutr. 60(5): 873-886.
[3]  Ekor, M. (2013). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacolog. 4: 177.
[4]  Enzo, A. P. (2011). Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid. Based complement. Alternat. Med. Article ID 680354, pp. 15.
[5]  Nasiruddin., Yu, Z., Zhao, T., Chen, G and Minghui, J. (2020). Allelopathic and Medicinal plant. 26. Millettia speciosa. Allelopathy J. 51(1): In press.
[6]  Candra, I., Foliatini., Hanafi., Lilis, S. and Maman, S. (2018). Volatile compound analysis using GC-MS, phytochemical screening and antioxidant activities of the husk of “Julang-Jaling” (Archidendron bubalinum (Jack) I.C Nielsen) from Lampung, Indonesia. Pharmacogn. J. 10(1): 92-98.
[7]  Mustapha, N. A and Runner, R. T. M. (2009). GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines. 3(3): pp. 9.
[8]  Zhao, L-J., Wei, L., Xiong, S-H., Jie, T., Lou, Z-H., Xie, M-X., Xia, B-H., Lin, L-M and Liao, D-F. (2018). Determination of total flavonoids contents and antioxidant activity of Ginkgo biloba leaf by near-infrared reflectance method. Int. J. Anal. Chem. pp. 7.
[9]  Park, K. M., Kwon, K.M and Lee, S.H. (2015). Evaluation of the antioxidant activities and tyrosinase inhibitory property from mycelium culture extracts. Evid. Based complement. Alternat. Med. Article ID 616298, pp. 7.
[10]  Varsha, G., Pooja, B and Pournima, S. (2018). Anti-solar study of ethanolic extract of leaves Moringa oleifera. Int. J. Adv. Community Med. 1(3): 08-10.
[11]  Varsha, G., Tulashiram, L and Shobha, H. (2108). Anti-solar study of ethanolic extract of leaves Cassia fistula. J. drug deliv. Ther. 8(5-s): 232-234.
[12]  Maqsood, M., Qureshi, R., Ali, S., Ikram, M., Khan, J. A. (2015). Preliminary screening of methanolic plant extracts against human rhabdomyosarcoma cell line from salt range, Pakistan. Pak. J. Bot. 47(1): 353-357.
[13]  Valentina, R., Sandra, S. A., Maria, E. M., Diego, U., Johanny, A., Jenny, P. Q and Loango, N. (2019). Biological activity of Passiflora edulis f. Flavicarpa ethanolic leaves extract on human colonic adenocarcinoma cells. J. Appl. Pharm. 9(02): 064-071.
[14]  Fong, J., Kamola, K., Yaxal, A., Pavel, K., Savo, L., Arkady, M., and Lothar, L. (2015). A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors. Photochem. Photobiol. Sci. 14(11): 2014-2023.
[15]  Fawzy, G. A., Areej, M. A and Shagufta, P. (2014). Anticancer activity of flavane gallates isolated from Plicosepalus curviflorus. Phocog. Mag. 10(39): 519-523.
[16]  Feoktisova, M., Geserick, P and Leverkus M. (2016). Crystal violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc. 343-346.
[17]  Idowu, J. S., Ayuk, E. O., Elizabeth, K and Wilfred, O-M. (2020). Phytochemical screening and gas chromatographymass spectrometry analysis of ethanol extract of Scambiosa columbabria L. Pharmacogn. Res. 12(1): 35-39.
[18]  Sundarraj, S., Ramar, T., Sreevani, V., Kaveri, K., Gunasekaran, P., Achiraman, S and Kannan, S. (2012). gamma-sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J. Ethnopharmacol. 141(3): 803-809.
[19]  Lokesh, R and Kannabiran, K. (2017). Cytotoxic potential of n-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J. Cell Bio. 12(1): 20-27.
[20]  Lakshmi, M and Bindu, R. N. (2017). GC-MS analysis of the chloroform extract of bark of Terminalia travancorensis Wight & Arn. (Combretaceae). Int. J. Pharm. Sci. Res. 8(2): 794-98.
[21]  Mika, D. T and Robert, V. C. (2019). The potential physiological role of γ-tocopherol in human health: A qualitative review. Nutr. Cancer. 72(5): 808-825.
[22]  Soodabeh, S., Azadeh, M., Ahmad, R. G and Mohammad, A. (2014). The story of beta-sitosterol: A review. European J. Med. Plants 4(5): 590-609.
[23]  Tareq, A. M., Farhad, S., Uddin, A. B. M. N., Hoque, M., Nasrin, M. S., Uddin, M. M. R., Mohiminul, H., Arafat, S., Munira, M. S., Chadni, L., Hossen, S. M. M., Reza, A.S.M. A and Emran, T. B. (2020). Chemical profiles, pharmacological properties, and in silico studies provide new insights on Cycas pectinata. Heliyon. 6(6), e04061.
[24]  Adnan, M., Chy, M. N.U., Kamal, A. T. M. M., Chowdhury, K. A. A., Rahman, M. A., Reza, A. S. M. A., Muniruzzaman, M., Rony, S. R., Nasrin, M. S., Azad, M. O. K., Park, C. H., Lim, Y. S and Cho, D. H. (2020). Intervention in neuropsychiatric disorders by suppressing inflammatory and oxidative stress signal and exploration of in silico studies for potential lead compounds from Holigarna caustica (Dennst.) Oken leaves. Biomolecules. 10(4): 561.
[25]  Kim, B-R., Hyun, M. K., Chang, H. J., Kang, S-Y., Kim, J-B., Yeo, G. J., Kong, Y. P., Lee, I-S and Han, A-R. (2020). Composition and antioxidant activities of volatile organic compounds in radiation-bred Coreopsis cultivars. Plants. 9(6): 717.
[26]  Mary, A. P. F and Giri, R. S. (2016). Phytochemical screening and GC-MS analysis in ethanolic leaf extracts of Ageratum Conyzoides (L.) World J. Pharm. Res. 5(7): 1019-1029.
[27]  Sushant, A., Manoj, K. B., Krisha, D., Puspa, K., Roshani, G and Niranjan, K. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants. 8(4): 96.
[28]  Mohammad, A. H., Afaf, M. W and Ahmed, S. H. I. (2019). Comparison of total phenols, flavonoids and antioxidant activity of various crude extracts of Hyoscyamus gallagheri traditionally used for the treatment of epilepsy. Clin. Phytoscience. 5(1): 20.
[29]  Kumar, V and Roy, B.K. (2018). Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Sci. Rep. 8, 10714.
[30]  Thanigaimalai, P., Manickam, M and Vigneshwaran, N. (2017). Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 32(1): 403-425.
[31]  Ando, H., Kondoh, H., Ichilhashi, M and Hearing, V. J. (2007). Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J. Invest. Dermatol. 127(4): 751-761.
[32]  Wilfred, O-M and Idowu, J. S. (2020). Anti-Melanogenesis, antioxidant and anti-tyrosinase activities of Scabiosa columbaria L. processes. 8: 236.
[33]  Adria, F., Guillermo, C., Francisco, L., Eva M. T., Montserrat, M and Victor, L. (2019). Evaluation of anti-tyrosinase and antioxidant properties of four fern species for potential cosmetic applications. Forests. 10: 179.
[34]  Mayuri, T. N., Benthota, M. A. S. M., Subasinghe, A. K. A., Mohomed, M. Q and Lalith, J. (2016). Photoprotective potential in some medicinal plants used to treat skin diseases in Sri Lanka. BMC Complement Altern. Med. 16:479.
[35]  Priyanka, S., Mary, S. R. I., Nandini, H. S., Kutty, A. V. M and Kiranmayee, P. (2018). A pilot study on sun protection factor of plant extracts: an observational study. Asian J. Pharm. Clin. Res. 11(4): 67-71.
[36]  Radhika, B., Neha, S., Ramya, N and Nooreen, N. (2019). Evaluation of sunscreen activity of Hibiscus Hirtus Linn. J. Bio. Innov. 8(2): 127-133.
[37]  International Agency for Research on Cancer, WHO. Geneva, Switzerland. (2018). Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018.
[38]  Joanna, J. L., Latifah, S. Y., Kassim, N. K., Abdullah, C. A. C., Nurulaidah, E., Lim, P. C and Tan, D. C. (2020). Cytotoxic activity of Christia vespertilionis root and leaf extracts and fractions against breast cancer cell lines. Molecules. 25: 2610.
[39]  Roy, A., Jauhari, N and Bharadvaja, N. (2018). Medicinal plants as a potential source of chemopreventive agents. In Anticancer Plants: Natural products and biotechnological implements; Akhtar, M.S., Swamy, M.K., Eds.; Springer: Singapore. 109-139.
[40]  Gunji, V., Swarupa, R. T., Vani, M and Vineela, P. A. J. (2015). In-vitro anticancer activity of petroleum ether extract of Cynodon dactylon. J. Pharmacogn. Phytochem. 4(1): 164-168.
[41]  Mardina, V., Ilyas, S., Harmawan, T., Halimatussakdiah, H and Tanjung, M. (2020). Antioxidant and cytotoxic activities of the ethyl acetate extract of Sphagneticola trilobata (L.) J.F. Pruski on MCF-7 breast cancer cell. J. Adv. Pharm. Technol. Res. 11(3): 123-7.
[42]  Kamalanathan, D and Natarajan, D. (2020). Anticancer potential of leaf and leaf-derived callus extracts of Aerva javanica against MCF-7 breast cancer cell line. J. Can. Res. Ther. 14:321-7.