Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2020, 8(9), 473-483
DOI: 10.12691/jfnr-8-9-4
Open AccessArticle

Addition of Opuntia ficus-indica Reduces Hypothalamic Microglial Activation and Improves Metabolic Alterations in Obese Mice Exposed to a High-fat Diet

Mercedes Victoria Urquiza-Martínez1, Héctor Eduardo Martínez-Flores2, , Omar Guzmán-Quevedo3, Ana Elisa Toscano4, Raul Manhães de Castro4, Luz Torner2, Rosalío Mercado-Camargo2, Rosa Elena Pérez-Sánchez2 and María Carmen Bartolome-Camacho2

1Programa Institucional de Doctorado en Ciencias Biológicas. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, México

2Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México

3Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, Michoacán, México

4Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, Recife, Brasil

Pub. Date: September 18, 2020

Cite this paper:
Mercedes Victoria Urquiza-Martínez, Héctor Eduardo Martínez-Flores, Omar Guzmán-Quevedo, Ana Elisa Toscano, Raul Manhães de Castro, Luz Torner, Rosalío Mercado-Camargo, Rosa Elena Pérez-Sánchez and María Carmen Bartolome-Camacho. Addition of Opuntia ficus-indica Reduces Hypothalamic Microglial Activation and Improves Metabolic Alterations in Obese Mice Exposed to a High-fat Diet. Journal of Food and Nutrition Research. 2020; 8(9):473-483. doi: 10.12691/jfnr-8-9-4


Opuntia ficus-indica consumption improves obesity and glucose and lipid metabolism, to name a few; however, the involved mechanism is poorly understood and attributed primarily to fiber. Obesity was recently shown to increase microglial cell activation in the hypothalamus. Here, we hypothesized that the addition of cactus flour (CF) to a high-fat diet (HFD) reduces hypothalamic inflammation, which is a key regulator of energy balance metabolism. Adult male C57Bl/6j mice underwent HFD (60% cal from fat) exposure over 12 weeks to develop obesity. The same type of HFD added with CF (17%) was administrated for 4 weeks. Bodyweight and food intake were recorded during the treatment, and glucose and insulin tolerance were evaluated at the end of the treatment. Additionally, the behavioral satiety sequence (BSS) was performed, and adiposity, along with microglia activation and density in the arcuate nucleus was determined. Herein, we found that CF normalizes body weight and adiposity without changes in absolute food intake. Moreover, CF modulated the cumulative caloric intake in a diet-dependent manner. Feed efficiency was decreased; glucose tolerance and insulin sensitivity were improved with CF treatment. BSS showed a decreased resting time and increased grooming for animals with an HFD-CF. Finally, CF consumption normalized microglia density in the arcuate nucleus of the hypothalamus in obese mice and significantly decreased their activation. This study shed new light on the understanding of the effects of cactus to reduce body weight, adiposity and improve glucose metabolism, and suggest they are mediated by the reduction of the microglial activation of the hypothalamic arcuate nucleus.

obesity energy metabolism microglia neuro-inflammation insulin

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Scottish Intercollegiate Guidelines Network (SIGN). Clinical management of obesity: a national clinical guideline No 15 Feb. 2010.
[2]  Ravussin, Y., Leibel, R.L. and Ferrante Jr, A.W., “A missing link in body weight homeostasis: the catabolic signal of the overfed state” Cell Metab 20(4), 565-72, 2014.
[3]  Milanski, M., Degasperi, G., Coope, A., Morari, J., Denis, R., Cintra, D.E., Tsukumo, D.M.L., Anhe, G., Amaral, M.E., Takahashi, H.K., Curi, R., Oliveira, H.C., Carvalheira, J.B.C., Bordin, S., Saad, M.J. and Velloso, L.A., “Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity”. J Neurosci, 29(2), 359-70, 2009.
[4]  Gautron, L., Elmquist, J.K. and Williams, K.W., “Neural control of energy balance: translating circuits to therapies”. Cell, 161(1), 133-45. 2015.
[5]  Berkseth, K.E., Guyenet, S.J., Melhorn, S.J., Donghoon, L., Thaler, J.P., Schur, E.A. and Schwartz, M.W., “Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study”, Endocrinol, 155(8), 2858-67, 2014.
[6]  Dragano, N.R., Haddad-Tovolli, R. and Velloso, L.A., “Leptin, neuroinflammation and obesity. Endocrine Immunology, Karger Pub., 48, 84-96, 2017.
[7]  Cota, D., Proulx, K. and Seeley, R.J., “The role of CNS fuel sensing in energy and glucose regulation”, Gastroenterol, 132(6), 2158-68, 2007.
[8]  Bensadón, S., Hervert-Hernández, D., Sáyago-Ayerdi, S.G. and Goñi, I., “By-products of Opuntia ficus-indica as a source of antioxidant dietary fiber”, Plant Foods Human Nutr, 65(3), 210-16, 2010.
[9]  Valencia-Sandoval, K., Brambila-Paz, J.D.J. and Mora-Flores, J.S., “Evaluación del nopal verdura como alimento funcional mediante opciones reales”, Agrociencia, 44(8), 955-63, 2010.
[10]  Osuna-Martínez, U., Reyes-Esparza, J. and Rodríguez-Fragoso, L., “Cactus (Opuntia ficus-indica): a review on its antioxidants properties and potential pharmacological use in chronic diseases”, Nat Prod Chem Res, 2, 153.
[11]  Lee, M.H., Kim, J.Y., Yoon, J.H., Lim, H.J., Kim, T.H., Jin, C., Kwak, W-J, Han, C-K. and Ryu, J-H-. “Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten”, Phytother Res, 20(9), 742-47, 2006.
[12]  Reeves, P.G., Nielsen, F.H., Fahey Jr, G.C., “AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet”, J Nutr, 123(11), 1939-51, 1993.
[13]  Parekh, P.I., Petro, A.E., Tiller, J.M., Feinglos, M.N., and Surwit, R.S., “Reversal of diet-induced obesity and diabetes in C57BL/6J mice”, Metabolism, 47(9), 1089-96, 1998.
[14]  Andrikopoulos, S., Blair, A.R., Deluca, N., Fam, B.C., Proietto, J., “Evaluating the glucose tolerance test in mice”. Am J Physiol-Endoc Metab, 295(6), E1323-32, 2008.
[15]  Vickers, S.P., Clifton, P.G., Dourish, C.T. and Tecott, L.H., “Reduced satiating effect of d-fenfluramine in serotonin 5-HT2C receptor mutant mice”, Psychopharmacol, 143(3), 309-14, 1999.
[16]  Halford, J.C., Wanninayake, S.C. and Blundell, J.E., “Behavioral satiety sequence (BSS) for the diagnosis of drug action on food intake”, Pharmacol Biochem Behav, 61(2), 159-68, 1998.
[17]  Lamanna, C. and Hart, E.R. “Relationship of lethal toxic dose to body weight of the mouse”, Toxicol Appl Pharm, 13(3), 307-15, 1968.
[18]  Roque, A., Ochoa-Zarzosa, A. and Torner, L., “Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels, Brain Behav Immun, 55, 39-48, 2016.
[19]  Faul, F., Erdfelder, E., Lang, A.-G. and Buchner, A. “G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences”, Behav Res Methods, 39, 175-91, 2007.
[20]  Hariri, N. and Thibault, L., “High-fat diet-induced obesity in animal models”, Nutr Res Rev, 23(2), 270-299, 2010.
[21]  Vinué, Á. and González-Navarro, H., “Glucose and Insulin Tolerance Tests in the Mouse”, Methods Mol Biol, 1339, 247-54, 2015.
[22]  Mann, A., Thompson, A., Robbins, N. and Blomkalns, A.L., “Localization, identification, and excision of murine adipose depots”, J Vis Exp, (94), e52174.
[23]  El-Mostafa, K., El Kharrassi, Y., Badreddine, A., Andreoletti, P., Vamecq, J., Kebbaj., M.S.E., Latruffe, N., Lizard, G., Nasser, B. and Cherkaoui-Malki, M., “Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease”, Mol, 19(9), 14879-901, 2014.
[24]  Thaler, J.P., Yi, C.X., Schur, E.A., Guyenet, S.J., Hwang, B.H., Dietrich, M.O., Zhao, X., Sarruf, D.A, Izgur, V., Maravilla, K.R., Nguyen, H.T., Fischer, J.D., Matsen, M.E., Wisse, B.E., Morton, G.J., Horvath, T.L., Baskin, D.G., Tschöp, M.H. and Schwartz, M.W., “Obesity is associated with hypothalamic injury in rodents and humans”, J Clin Invest, 122(1), 153-162, 2012.
[25]  Wang, C.Y. and Liao, J.K., “A mouse model of diet-induced obesity and insulin resistance”, Methods Mol Biol, 821, 421-33, 2012.
[26]  Jais, A. and Brüning, J.C., “Hypothalamic inflammation in obesity and metabolic disease”, J Clin Invest, 127(1), 24-32, 2017.
[27]  Dorfman, M.D. and Thaler, J.P., “Hypothalamic inflammation and gliosis in obesity”, Curr Opin Endocrinol, 22(5), 325, 2015.
[28]  André, C., Guzman-Quevedo, O., Rey, C., Rémus-Borel, J., Clark, S., Castellanos-Jankiewicz, A., Ladeveze, E., Leste-Lasserre, T., Nadjar, A., Abrous, D.N., Laye, S. and Cota D., “Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation”, Diabetes, 66(4), 908-919, 2017.
[29]  Luo, C., Zhang, W., Sheng, C., Zheng, C., Yao, J. and Miao, Z., “Chemical composition and antidiabetic activity of Opuntia Milpa Alta extracts”, Chem Biodivers, 7, 2869-79, 2010.
[30]  Van Proeyen, K., Ramaekers, M., Pischel, I. and Hespel, Pel., “Opuntia ficus indica ingestion stimulates peripheral disposal of oral glucose before and after exercise in healthy men”, Int J Sport Nutr Exerc Metab, 22, 284-91, 2012.
[31]  López-Romero, P., Pichardo-Ontiveros, E., Avila-Nava, A., Vázquez-Manjarrez, N., Tovar, A.R., Pedraza-Chaverri, J. and Torres, N., “The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts”, J Acad Nutr Diet, 114(11), 1811-18, 2014.
[32]  Rodríguez-Rodríguez, C., Torres, N., Gutiérrez-Uribe, J.A., Noriega, L.G., Torre-Villavalzo, I., Leal-Díaz, A.M., Antunes-Ricardo, M., Márquez-Mota, C., Ordaz, G., Chavez-Santoscoy, R.A., Serna-Saldivar, S.O., Tovar, A.R., “The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity”, Food Func, 6(3), 805-15, 2015.
[33]  Isken, F., Klaus, S., Osterhoff, M., Pfeiffer, A. and Weickert, M., “Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice”, J Nutr Bioch, 21(4), 278-84, 2010.
[34]  Halford, J.C. and Harrold, J.A., “Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management”, Proc Nutr Soc, 71(2), 350-62, 2012.
[35]  van der Klaauw, A.A. and Farooqi, I.S. “The hunger genes: pathways to obesity”, Cell, 161(1), 119-32, 2015.
[36]  Czech, M.P. “Insulin action and resistance in obesity and type 2 diabetes”, Nat Med, 23(7), 804, 2017.
[37]  Angulo-Bejarano, P.I., Martínez-Cruz O. and Paredes-López, O., “Phytochemical content, nutraceutical potential and biotechnological applications of an ancient Mexican plant: nopal (Opuntia ficus-indica)”, Curr Nutr Food Sci, 10(3),196-217, 2014.
[38]  Amin, T. and Mercer, J.G. “Hunger and satiety mechanisms and their potential exploitation in the regulation of food intake”, Curr Obes Rep, 5(1), 106-12, 2016.
[39]  Tremblay, A. and Bellisle, F., “Nutrients, satiety, and control of energy intake” Appl Physiol Nutr Metab 40(10), 971-79, 2015.
[40]  Saleem, M., Kim, H.J., Han, C.K., Jin, C. and Lee, Y.S., “Secondary metabolites from Opuntia ficus-indica var. saboten”, Phytochem, 67(13), 1390-94, 2006.
[41]  da-Silva, W.S., Harney, J.W., Kim, B.W., Li, J., Bianco, S.D.C., Crescenzi, A., Christoffolete, M.A., Huang, S.A., Bianco, A.C., “The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation”, Diabetes, 56(3), 767-76, 2007.
[42]  Panickar, K.S. “Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity”, Mol Nutr Food Res, 57(1), 34-47, 2013.
[43]  Magrone, T., Perez de Heredia, F. and Jirillo, E., “Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases”, Can J Physiol Pharmacol, 91(6), 387-96, 2013.
[44]  Mohamed, S., “Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease”, Trends Food Sci Technol, 35(2), 114-28, 2014.
[45]  Yang, J, Kim, C.S., Tu, T., Kim, M-S., Goto, T., Kawada, T., Choi, M-S., Park, T., Sung, M-K., Yun, J.W., Choe, S-Y., Lee, J.H., Joe, Y., Choi, H-S., Back, S.H., Chung, H.T. and Yu, R., “Quercetin protects obesity-induced hypothalamic inflammation by reducing microglia-mediated inflammatory responses via HO-1 induction”, Nutrients, 9(7), 650, 2017.
[46]  Okuda, M.H., Zemdegs, J.C.S., de Santana, A.A., Santamarina, A.B., Moreno, M.F., Hachul, A.C.L., dos Santos, B., Oller, C.M., do Nascimento, C.M.O., Ribeiro, E.B. and Oyama, L.M., “Green tea extract improves high fat diet-induced hypothalamic inflammation, without affecting the serotoninergic system”, J Nutr Biochem, 25(10), 1084-89, 2014.
[47]  Wu, Y., Yu, Y., Szabo, A., Han, M. and Huang, X-F., “Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet”, PloS one, 9(3), e92618, 2014.
[48]  Khare, P., Jagtap, S., Jain, Y., Baboota, R.K., Mangal, P., Boparai, R.K., Bhutani, K.K., Sharma, S.S., Premkumar, L.S., Kondepudi, K.K., Chopra, K. and Bishnoi, M., “Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice”, Biofactors, 42(2), 201-11, 2016.