Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2019, 7(10), 688-695
DOI: 10.12691/jfnr-7-10-1
Open AccessArticle

Lotus Leaf Ethanol Extract and Nuciferine Suppress Adipocyte Differentiation by Regulating Akt-mTORC1 Signaling in 3T3-L1 Cells

Ahyoung Yoo1, Young Jin Jang1, Jiyun Ahn1, Chang Hwa Jung1, Won Hee Choi2 and Tae Youl Ha1,

1Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea

2Research Center, Teazen, Anyang-si, 14067, Republic of Korea

Pub. Date: October 02, 2019

Cite this paper:
Ahyoung Yoo, Young Jin Jang, Jiyun Ahn, Chang Hwa Jung, Won Hee Choi and Tae Youl Ha. Lotus Leaf Ethanol Extract and Nuciferine Suppress Adipocyte Differentiation by Regulating Akt-mTORC1 Signaling in 3T3-L1 Cells. Journal of Food and Nutrition Research. 2019; 7(10):688-695. doi: 10.12691/jfnr-7-10-1

Abstract

Lotus leaf has been reported to exert anti-inflammatory, hypolipidemic, and hepatoprotective effects. However, the effect of lotus leaf on adipocyte differentiation and its action mechanism have not been clarified. In this study, 3T3-L1 preadipocytes were incubated with or without lotus leaf ethanol extract (EEN) for 8 days. Microscopic inspection and Oil Red O staining indicated that EEN treatment significantly reduced adipogenesis in 3T3-L1 cells. EEN also downregulated the protein levels of adipogenic transcription factors including sterol regulatory element binding protein 1 (SREBP1), peroxisome proliferator-activated receptor-gamma (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα), and target genes such as adipocyte binding protein 2 (aP2) and fatty acid synthase (FAS) in a dose-dependent manner. In order to understand whether nuciferine, the primary active component of EEN contributed to the anti-adipogenic activity of EEN, we examined the effect of nuciferine on adipogenesis related gene expression. Nuciferine significantly reduced expression of adipogenic transcription factors and target genes. Notably, nuciferine downregulated the phosphorylation of Akt, mammalian target of rapamycin complex 1 (mTORC1), S6K, and 4EBP1. These results suggest that lotus leaf ethanol extract exerts anti-adipogenic activity, and could be partially mediated through the regulation of the Akt-mTORC1 signaling pathway by nuciferine.

Keywords:
lotus leaf nuciferine adipogenesis Akt-mTORC1 signaling 3T3-L1 cell

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Alsabeeh, N., Chausse, B., Kakimoto, P. A., Kowaltowski, A. J., and Shirihai, O., "Cell culture models of fatty acid overload: problems and solutions", Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1863 (2). 143-151. 2018.
 
[2]  Tchoukalova, Y. D., Sarr, M. G., and Jensen, M. D., "Measuring committed preadipocytes in human adipose tissue from severely obese patients by using adipocyte fatty acid binding protein", American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287 (5). R1132-R1140. 2004.
 
[3]  Nishimura, S., Manabe, I., Nagasaki, M., Hosoya, Y., Yamashita, H., Fujita, H., Ohsugi, M., Tobe, K., Kadowaki, T., and Nagai, R., "Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels", Diabetes, 56 (6). 1517-1526. 2007.
 
[4]  Kopelman, P. G., "Obesity as a medical problem", Nature, 404 (6778). 635-643. 2000.
 
[5]  Farmer, S. R., "Transcriptional control of adipocyte formation", Cell metabolism, 4 (4). 263-273. 2006.
 
[6]  Porstmann, T., Santos, C. R., Griffiths, B., Cully, M., Wu, M., Leevers, S., Griffiths, J. R., Chung, Y. L., and Schulze, A., "SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth", Cell metabolism, 8 (3). 224-236. 2008.
 
[7]  Kim, J. E. and Chen, J., "Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis", Diabetes, 53 (11). 2748-2756. 2004.
 
[8]  Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K. L., "TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling", Nature cell biology, 4 (9). 648-657. 2002.
 
[9]  Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J., and Cantley, L. C., "Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway", Molecular cell, 10 (1). 151-162. 2002.
 
[10]  Düvel, K., Yecies, J. L., Menon, S., Raman, P., Lipovsky, A. I., Souza, A. L., Triantafellow, E., Ma, Q., Gorski, R., and Cleaver, S., "Activation of a metabolic gene regulatory network downstream of mTOR complex 1", Molecular cell, 39 (2). 171-183. 2010.
 
[11]  Zhang, H. H., Huang, J., Düvel, K., Boback, B., Wu, S., Squillace, R. M., Wu, C.-L., and Manning, B. D., "Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway", PloS one, 4 (7). e6189. 2009.
 
[12]  Mohamed, G. A., Ibrahim, S. R., Elkhayat, E. S., and El Dine, R. S., "Natural anti-obesity agents", Bulletin of Faculty of Pharmacy, Cairo University, 52 (2). 269-284. 2014.
 
[13]  Mukherjee, A., Mukherjee, S., Biswas, J., and Roy, M., "Phytochemicals in obesity control", International Journal of Current Microbiology and Applied Sciences, 4. 558-567. 2015.
 
[14]  Yun, J. W., "Possible anti-obesity therapeutics from nature-A review", phytochemistry, 71 (14-15). 1625-1641. 2010.
 
[15]  Hu, M. and Skibsted, L. H., "Antioxidative capacity of rhizome extract and rhizome knot extract of edible lotus (Nelumbo nuficera)", Food Chemistry, 76 (3). 327-333. 2002.
 
[16]  Jung, H. A., Kim, J. E., Chung, H. Y., and Choi, J. S., "Antioxidant principles ofNelumbo nucifera stamens", Archives of pharmacal research, 26 (4). 279-285. 2003.
 
[17]  Hyun, S. K., Jung, Y. J., Chung, H. Y., Jung, H. A., and Choi, J. S., "Isorhamnetin glycosides with free radical and ONOO-scavenging activities from the stamens ofNelumbo nucifera", Archives of pharmacal research, 29 (4). 287-292. 2006.
 
[18]  Sohn, D. H., Kim, Y. C., Oh, S. H., Park, E. J., Li, X., and Lee, B. H., "Hepatoprotective and free radical scavenging effects of Nelumbo nucifera", Phytomedicine, 10 (2-3). 165-169. 2003.
 
[19]  Rai, S., Wahile, A., Mukherjee, K., Saha, B. P., and Mukherjee, P. K., "Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds", Journal of ethnopharmacology, 104 (3). 322-327. 2006.
 
[20]  Liu, C. P., Tsai, W. J., Lin, Y. L., Liao, J. F., Chen, C. F., and Kuo, Y. C., "The extracts from Nelumbo nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells", Life sciences, 75 (6). 699-716. 2004.
 
[21]  Liu, C. P., Tsai, W. J., Shen, C. C., Lin, Y. L., Liao, J. F., Chen, C. F., and Kuo, Y. C., "Inhibition of (S)-armepavine from Nelumbo nucifera on autoimmune disease of MRL/MpJ-lpr/lpr mice", European journal of pharmacology, 531 (1-3). 270-279. 2006.
 
[22]  Mukherjee, P. K., Saha, K., Das, J., Pal, M., and Saha, B., "Studies on the anti-inflammatory activity of rhizomes of Nelumbo nucifera", Planta medica, 63 (04). 367-369. 1997.
 
[23]  Rao, G., Pushpangadan, P., and Shirwaikar, A., "Hepatoprotective activity of Nelumbo nucifera Geartn. flower: an ethnopharmacological study", ACTA Pharmaceutica Sciencia, 47 (1). 79-88. 2005.
 
[24]  Mukherjee, P. K., Pal, S. K., Saha, K., and Saha, B., "Hypoglycaemic activity of Nelumbo nucifera Gaertn.(Fam. Nymphaeaceae) rhizome (methanolic extract) in streptozotocin-induced diabetic rats", Phytotherapy Research, 9 (7). 522-524. 1995.
 
[25]  Mukherjee, P. K., Saha, K., Pal, M., and Saha, B., "Effect of Nelumbo nucifera rhizome extract on blood sugar level in rats", Journal of ethnopharmacology, 58 (3). 207-213. 1997.
 
[26]  Ono, Y., Hattori, E., Fukaya, Y., Imai, S., and Ohizumi, Y., "Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats", Journal of ethnopharmacology, 106 (2). 238-244. 2006.
 
[27]  Du, H., You, J. S., Zhao, X., Park, J. Y., Kim, S. H., and Chang, K. J., "Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet", Journal of biomedical science, 17 (1). S42. 2010.
 
[28]  Ohkoshi, E., Miyazaki, H., Shindo, K., Watanabe, H., Yoshida, A., and Yajima, H., "Constituents from the leaves of Nelumbo nucifera stimulate lipolysis in the white adipose tissue of mice", Planta medica, 73 (12). 1255-1259. 2007.
 
[29]  Onishi, E., Yamada, K., Yamada, T., Kaji, K., Inoue, H., Seyama, Y., and Yamashita, S., "Comparative effects of crude drugs on serum lipids", Chemical and pharmaceutical bulletin, 32 (2). 646-650. 1984.
 
[30]  Luo, X., Chen, B., Liu, J., and Yao, S., "Simultaneous analysis of N-nornuciferine, O-nornuciferine, nuciferine, and roemerine in leaves of Nelumbo nucifera Gaertn by high-performance liquid chromatography–photodiode array detection-electrospray mass spectrometry", Analytica Chimica Acta, 538 (1-2). 129-133. 2005.
 
[31]  Hu, L., Xu, W., Zhang, X., Su, J., Liu, X., Li, H., and Zhang, W., "In-vitro and in-vivo evaluations of cytochrome P450 1A2 interactions with nuciferine", Journal of Pharmacy and Pharmacology, 62 (5). 658-662. 2010.
 
[32]  Nguyen, K. H., Ta, T. N., Pham, T. H. M., Nguyen, Q. T., Pham, H. D., Mishra, S., and Nyomba, B. G., "Nuciferine stimulates insulin secretion from beta cells-An in vitro comparison with glibenclamide", Journal of ethnopharmacology, 142 (2). 488-495. 2012.
 
[33]  Guo, F., Yang, X., Li, X., Feng, R., Guan, C., Wang, Y., Li, Y., and Sun, C., "Nuciferine prevents hepatic steatosis and injury induced by a high-fat diet in hamsters", PloS one, 8 (5). e63770. 2013.
 
[34]  Zhang, C., Deng, J., Liu, D., Tuo, X., Xiao, L., Lai, B., Yao, Q., Liu, J., Yang, H., and Wang, N., "Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARα/PPARγ coactivator-1α pathway", British journal of pharmacology, 175 (22). 4218-4228. 2018.
 
[35]  Ma, C., Li, G., He, Y., Xu, B., Mi, X., Wang, H., and Wang, Z., "Pronuciferine and nuciferine inhibit lipogenesis in 3T3-L1 adipocytes by activating the AMPK signaling pathway", Life sciences, 136. 120-125. 2015.
 
[36]  Park, J. Y., Kim, Y., Im, J., You, S., and Lee, H., "Inhibition of adipogenesis by oligonol through AktmTOR inhibition in 3T3-L1 adipocytes", Evidence-Based Complementary and Alternative Medicine, 2014. ID895272. 2014.
 
[37]  Cao, Z., Umek, R. M., and McKnight, S. L., "Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells", Genes & development, 5 (9). 1538-1552. 1991.
 
[38]  Porstmann, T., Griffiths, B., Chung, Y. L., Delpuech, O., Griffiths, J. R., Downward, J., and Schulze, A., "PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP", Oncogene, 24 (43). 6465-6481. 2005.
 
[39]  Hegarty, B. D., Bobard, A., Hainault, I., Ferré, P., Bossard, P., and Foufelle, F., "Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory elementbinding protein-1c", Proceedings of the National Academy of Sciences, 102 (3). 791-796. 2005.
 
[40]  Rosen, E. D. and MacDougald, O. A., "Adipocyte differentiation from the inside out", Nature reviews Molecular cell biology, 7 (12). 885-896. 2006.
 
[41]  Laplante, M. and Sabatini, D. M., "An emerging role of mTOR in lipid biosynthesis", Current biology, 19 (22). R1046-R1052. 2009.
 
[42]  Chmurzyńska, A., "The multigene family of fatty acidbinding proteins (FABPs): function, structure and polymorphism", Journal of applied genetics, 47 (1). 39-48. 2006.
 
[43]  Claycombe, K. J., Jones, B. H., Standridge, M. K., Guo, Y., Chun, J. T., Taylor, J. W., and Moustaïd Moussa, N., "Insulin increases fatty acid synthase gene transcription in human adipocytes", American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 274 (5). R1253-R1259. 1998.
 
[44]  Ma, X. M. and Blenis, J., "Molecular mechanisms of mTOR-mediated translational control", Nature reviews Molecular cell biology, 10 (5). 307-318. 2009.
 
[45]  Fingar, D. C., Richardson, C. J., Tee, A. R., Cheatham, L., Tsou, C., and Blenis, J., "mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E", Molecular and cellular biology, 24 (1). 200-216. 2004.
 
[46]  Peng, X. d., Xu, P. Z., Chen, M. L., Hahn Windgassen, A., Skeen, J., Jacobs, J., Sundararajan, D., Chen, W. S., Crawford, S. E., and Coleman, K. G., "Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2", Genes & development, 17 (11). 1352-1365. 2003.
 
[47]  Leavens, K. F., Easton, R. M., Shulman, G. I., Previs, S. F., and Birnbaum, M. J., "Akt2 is required for hepatic lipid accumulation in models of insulin resistance", Cell metabolism, 10 (5). 405-418. 2009.
 
[48]  Laplante, M. and Sabatini, D. M., "mTOR signaling in growth control and disease", Cell, 149 (2). 274-293. 2012.