Journal of Automation and Control
ISSN (Print): 2372-3033 ISSN (Online): 2372-3041 Website: https://www.sciepub.com/journal/automation Editor-in-chief: Santosh Nanda
Open Access
Journal Browser
Go
Journal of Automation and Control. 2016, 4(2), 26-29
DOI: 10.12691/automation-4-2-4
Open AccessSpecial Issue

Kinematic Model and Control Algorithm for the Path Tracking of Nonholonomic Mobile Robots

Ľubica Miková1, and Alexander Gmiterko1

1Technical University of Košice, Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechatronics, Košice, Slovakia

Pub. Date: December 14, 2016

Cite this paper:
Ľubica Miková and Alexander Gmiterko. Kinematic Model and Control Algorithm for the Path Tracking of Nonholonomic Mobile Robots. Journal of Automation and Control. 2016; 4(2):26-29. doi: 10.12691/automation-4-2-4

Abstract

Provided in this article is a general overview of nonholonomic mobile robots’ modelling. Emphasis is given to the structural characteristics of kinematic models, taking into account the mobility restrictions caused by various links. Another problem of nonholonomic mobile robots is tracking of the prescribed path. The classic “tracking controllers” are not appropriate for this type of tasks, because they do not guarantee that the robot remains on the prescribed path. The aim of this paper is to propose and to verify, by means of computer simulation, the method of control, which ensures that the “output” of the robot will move along the prescribed path.

Keywords:
mobile robot path tracking kinematic model

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Jurišica, F. Duchoň, J. Tóth, Programming of mobile robot with RoboRealm, AT&P Journal Plus, 2011.
 
[2]  Ľ. Miková, M. Čurilla, Possibility of the kinematics arrangement of a mobile mechatronic system, American Journal of Mechanical Engineering. Vol. 1, no. 7, p. 390-393, (2013).
 
[3]  B. Siciliano, Bruno, O. Khatib, Handbook of robotics. Springer, (2008).
 
[4]  R. W. Brockett, Asymptotic Stability and Feedback Stabilization. R.S. Millmann (eds.), Differential Geometric Control Theory, Birkhauser, Boston, 392 MA, 1983.
 
[5]  Ľ. Miková, F. Trebuňa, M. Čurilla, Model of mechatronic system's undercarriage created on the basis of its dynamics, In: Process Control (PC), International Conference : Štrbské Pleso, Slovakia, IEEE, (2013).
 
[6]  Ľ. Miková, F. Trebuňa, M. Kelemen, Concept of locomotion mobile undercarriage structurecontrol for the path tracking, Solid State Phenomena, Vol. 198, (2013).
 
[7]  C. Urrea, J. Muñoz, Path Tracking of Mobile Robot in Crops, J Intell Robot Syst, (2013).
 
[8]  A. Ollero, A. Garcla-Cerezo, J.L. Martinez, Fuzzy supervisory path tracking of mobile robots, ConwEn .Practice, Vol 2, No. 2, (1994).
 
[9]  Y. Nakamura, H. Ezaki, Y. Tan, W. CHung, Design of steering mechanism and control of nonholonomic trailer systems, IEEE Trans. Robot. Automat. 17(3), s. 367-374, 2001.
 
[10]  Ľ. Bartoš, Vybrané problémy kinematiky štandardných kolesových podvozkov mobilných
 
[11]  Y. Nakamura, H. Ezaki, Y. Tan, W. CHung, Design of steering mechanism and control of nonholonomic trailer systems, IEEE Trans. Robot. Automat. 17(3), s. 367-374, 2001.
 
[12]  M. Egerstedt, X. Hu, X. A. Stotsky, Control of a mobile plat forms using a virtual vehicle approach, IEEE Transactions on automatic control, Vol. 46, NO. 11, p. 1777-1782, 2001.
 
[13]  D. P. Han, Q. Wei, Z. X. Li, Path rollowing of mobile robots using a virtual vehicle approach, Proceedings of the 25th Chinese Control conference, Harbin, Heilongjiang, p. 1533-1537, 2006.