American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2018, 6(1), 1-14
DOI: 10.12691/ajn-6-1-1
Open AccessReview Article

Review of GaN Nanostructured Based Devices

Ahmed M. Nahhas1,

1Department of Electrical Engineering, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

Pub. Date: May 28, 2018

Cite this paper:
Ahmed M. Nahhas. Review of GaN Nanostructured Based Devices. American Journal of Nanomaterials. 2018; 6(1):1-14. doi: 10.12691/ajn-6-1-1

Abstract

This paper presents a review of recent advances of GaN based nanostructured materials and devices. GaN has gained substantial interest in the research area of wide band gap semiconductors due to its unique electrical, optical and structural properties. GaN nanostructured material exhibits many advantages for nanodevices due to its higher surface-to-volume ratio as compared to thin films. GaN nanostructured material has the ability to absorb ultraviolet (UV) radiation and immense in many optical applications. Recently, GaN nanostructured based devices have gained much attention due to their various potential applications. GaN as nanomaterial have been used in many devices such as UV photodetectors, light emitting diodes, solar cells and transistors. The recent aspects of GaN based devices are presented and discussed. The performance of several devices structures which has been demonstrated on GaN is reviewed. The structural, electrical, and optical properties are also reviewed.

Keywords:
gallium nitride (GaN) nanostructured doping light emitting diodes nanowires multiple quantum wells ultraviolet

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 27

References:

[1]  S. Madhusoodhanan, S. Sandoval, Y. Zhao, M. Ware, and Z. Chen, “A Highly linear temperature sensor using GaN-on-SiC heterojunction diode for high power applications,” IEEE Electron Device Letters 38, 1105- 1108 (2017).
 
[2]  Y. Guan, Y. Wang, D. Xu, and W. Wang, “A 1 MHz half-bridge resonant DC/DC converter based on GaN FETs and planar magnetics,” IEEE Transactions on Power Electronics 32, 2876-2891 (2017).
 
[3]  J. Wu, W. Walukiewicz, K. Yu, W. Shan, and J. Ager, “Superior radiation resistance of In 1-xGa xN alloys: Full-solar-spectrum photovoltaic material system,” Journal of Applied Physics 94, 6477-6482 (2003).
 
[4]  U. Mishra, L. Shen, T. Kazior, and Y. Wu, “GaN-based RF power devices and amplifiers,” Proceedings of IEEE 96, 287-305 (2008).
 
[5]  R. Sun, G. Wang, and Z. Peng, “Fabrication and UV photoresponse of GaN nanowire-film hybrid films on sapphire substrates by chemical vapor deposition method,” Materials Letters 217, 288-291 (2018).
 
[6]  V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, and Y. Shreter, “Nature of V-shaped defects in GaN,” Japanese Journal of Applied Physics 52, 08JE14 (2013).
 
[7]  C. Skierbiszewski, “Growth and characterization of AlInN/GaInN quantum wells for high-speed intersubband devices at telecommunication wavelengths,” Proceedings of SPIE 6121, 612109 (2006).
 
[8]  B. Gao, H. Liu, Q. Kuang, W. Zhou, and L. Cao, “A novel model of photo-carrier screening effect on the GaN based p-i-n ultraviolet detector,” Science China Physics 53, 793-801 (2010).
 
[9]  T. Zimmermann, M. Neuburger, P. Benkart, F. Hernandez-Guillen, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, and E. Kohn, “Piezoelectric GaN sensor structures,” IEEE Electron Device Letters 27, 309-312 (2006).
 
[10]  Y. Ikawa, K. Lee, J. Ao, and Y. Ohno, “Two-dimensional device simulation of AlGaN/GaN heterojunction FET side-gating effect,” Japanese Journal of Applied Physics 53, 114302 (2014).
 
[11]  H. Song and S. Lee, “Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices,” Nanotechnology 18, 255202 (2007).
 
[12]  S. Nakamura, “Current status of GaN-based solid-state lighting,” Materials Research 34, 101-107 (2009).
 
[13]  K. Song and H. Kim, “Optical properties of undoped a-plane GaN grown with different initial growth pressures,” Japanese Journal of Applied Physics 51, 092101 (2012).
 
[14]  M. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” Journal of Applied Physics 97, 061301-061395 (2005).
 
[15]  A. Slimane, A. Najar A, T. Ng, and B. Ooi, “Thermal annealing induced relaxation of compressive strain in porous GaN structures,” Proceedings of the 25th of IEEE Photonics Conference, 921-922 (2012).
 
[16]  Z. Liao, H. Zhang, Y. Zhou, J. Xu, J. Zhang, and D. Yu, “Surface effects on photoluminescence of single ZnO nanowires,” Physics Letters A 372, 4505-4509 (2008).
 
[17]  D. Li, X. Sun, and H. Song, “Realization of a high- performance GaN UV detector by nanoplasmonic enhancement,” Advanced Materials 24, 845-849 (2012).
 
[18]  M. Hetzl, F. Schuster, A. Winnerl, S. Weiszer, and M. Stutzmann, “GaN nanowires on diamond,” Materials Science in Semiconductor Processing 48, 65-78 (2016).
 
[19]  M. Qaeed, K. Ibrahim, K. Saron, M. Mukhlif, A. Ismail, N. Elfadill, K. Chahrour, Q. Abdullah, and K. Andiroba, “New issue of GaN nanoparticles solar cell,” Current Applied Physics 15, 499-503 (2015).
 
[20]  R. Yu, L. Dong, C. Pan, S. Niu, H. Liu, W. Liu, S. Chua, D. Chi, and Z. Wang, “Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics,” Advanced Materials 24, 3532-3537 (2012).
 
[21]  Z. Li, X. Chen, H. Li, Q. Tu, Z. Yang, Y. Xu, and B. Hu, “Synthesis and raman scattering of GaN nanorings, nanoribbons and nanowires,” Applied Physics A 72, 629-632 (2001).
 
[22]  J. Sodre, E. Longo, C. Taft, J. Martins, and J. Santos, “Electronic structure of GaN nanotubes,” Comptes Rendus Chimie 20, 190-196 (2017).
 
[23]  M. Lee, D. Mikulik, and S. Park, “Thick GaN growth via GaN nanodot formation by HVPE,” CrystEngComm 19, 930-935 (2017).
 
[24]  M. Reddeppa, B. Park, S. Lee, N. Hai, M. Kim, and J. Oh, “Improved Schottky behavior of GaN nanorods using hydrogen plasma treatment,” Current Applied Physics 17, 192-196 (2017).
 
[25]  S. Elashmawi, A. Abdelghany, and N. Hakeem, “Quantum confinement effect of CdS nanoparticles dispersed within PVP/PVA nanocomposites,” Journal of Materials Science 24, 2956-2961 (2013).
 
[26]  T. Narita, K. Kataoka, M. Kanechika, T. Kachi, and T. Uesugi, “Ion implantation technique for conductivity control of GaN,” IEEE 17th International Workshop on Junction Technology (IWJT), 87-90 (2017).
 
[27]  S. Matsunaga, S. Yoshida, T. Kawaji, and T. Inada, “Silicon implantation in epitaxial GaN layers: Encapsulant annealing and electrical properties,” Journal of Applied Physics 95, 2461 (2004).
 
[28]  Y. Irokawa, O. Fujishima, T. Kachi, and Y. Nakano, “Electrical activation characteristics of silicon implanted GaN,” Journal of Applied Physics 97, 083505 (2005).
 
[29]  C. Ostermaier, P. Lagger, M. Alomari, P. Herfurth, D. Maier, A. Alexewicz, M. Forte-Poisson, S. Delage, G. Strasser, D. Pogany, and E. Kohn, “Reliability investigation of the degradation of the surface passivation of InAlN/GaN HEMTs using a dual gate structure,” Microelectronics and Reliability 52, 1812-1815 (2012).
 
[30]  Y. Kong, L. Liu, S. Xia, Y. Diao, H. Wang, and M. Wang, “Optoelectronic properties of Mg doping GaN nanowires,” Optical and Quantum Electronics 48, 1-12 (2016).
 
[31]  C. Walle, J. Neugebauer, C. Stamp, M. Mccluskeyc, and N. Johnson, “Defects and defect reactions in semiconductor nitrides,” Acta Physica Polonica A 96, 613-627 (1999).
 
[32]  F. Naranjo, E. Calleja, Z. Bougrioua, A. Trampert, X. Kong, and K. Ploog, “Efficiency optimization of p-type doping in GaN:Mg layers grown by molecular-beam epitaxy,” Journal of Crystal Growth 270, 542-546 (2004).
 
[33]  T. Narita, T. Kachi1, K. Kataoka and T. Uesugi, “P-type doping of GaN(0001) by magnesium ion implantation,” Applied Physics Express 10, 16501 (2017).
 
[34]  X. Cai, A. Djurisic, M. Xie, H. Liu, X. Zhang, J. Zhu, and H. Yang, “Ferromagnetism in Mn and Cr doped GaN by thermal diffusion,” Materials Science and Engineering B 117, 292-295 (2005).
 
[35]  G. Aluri, M. Gowda, N. Mahadik, S. Sundaresan, M. Rao, J. Schreifels, J. Freitas, S. Qadri, and Y. Tian, “Microwave annealing of Mg-implanted and in situ Be-doped GaN,” Journal of Applied Physics 108, 083103 (2010).
 
[36]  W. Khalfaoui. T. Oheix, G. El‐Zammar, R. Benoit, F. Cayrel, E. Faulques, F. Massuyeau, A. Yvon, E. Collard, and D. Alquier, “Impact of rapid thermal annealing on Mg‐implanted GaN with a SiOx/AlN cap‐layer,” Physica Status Solidi 214, 1-8 (2017).
 
[37]  D. As, U. Kohler, M. Lubbers, J. Mimkes, and K. Lischka, “p-Type doping of cubic GaN by carbon,” Physica Status Solidi A 188, 699-703 (2001).
 
[38]  H. Yacoub, C. Mauder, S. Leone, M. Eickelkamp, D. Fahle, M. Heuken, H. Kalisch, and A. Vescan, “Effect of different carbon doping techniques on the dynamic properties of GaN-on-Si buffers,” IEEE Transactions on Electron Devices 64, 991-997 (2017).
 
[39]  D. Bisi, M. Meneghini, F. Marino, D. Marcon, S. Stoffels, M. Hove, S. Decoutere, G. Meneghesso, and E. Zanoni, “Kinetics of buffer-related RON-increase in GaN-on-Silicon MIS-HEMTs,” IEEE Electron Device Letters 35, 1004-1006 (2014).
 
[40]  C. Seager, A. Wright, J. Yu, and W. Gotz, “Role of carbon in GaN,” Journal of Applied Physics 92, 6553- 6560 (2002).
 
[41]  H. Tang, J. Webb, J. Bardwell, S. Raymond, J. Salzman, and C. Uzan-Saguy, “Properties of carbon-doped GaN,” Applied Physics Letters 78, 757-759 (2001).
 
[42]  D. Koleske, A. Wickenden, R. Henry, and M. Twigg, “Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN,” Journal of Crystal Growth 242, 55-69 (2002).
 
[43]  N. Weimann, L. Doppalapudi, H. Ng, and T. Moustakas, “Scattering of electrons at threading dislocations in GaN,” Journal of Applied Physics 83, 3656-3659 (1998).
 
[44]  K. O’Donnell, P. Edwards, M. Kappers, K. Lorenz, E. Alves, and M. Bockowski, “Europium-doped GaN(Mg): beyond the limits of the light-emitting diode,” Physics Status Solidi C 11, 662-665 (2014).
 
[45]  K. O'Donnell and B. Hourahine, “Rare earth doped III- nitrides for optoelectronics,” The European Physical Journal 36, 91-103 (2006).
 
[46]  A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p- type/Europium-doped/n-type Gallium Nitride light-emitting diode under current injection,” Applied Physics Express 2, 071004 (2009).
 
[47]  I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Bockowski, “Identification of the prime optical center in GaN:Eu3+,” Physics Review B 81, 085209 (2010).
 
[48]  K. Lorenz, E. Alves, I. Roqan, K. O'Donnell, A. Nishikawa, Y. Fujiwara, and M. Bockowski, “Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy,” Applied Physics Letters 97, 111911 (2010).
 
[49]  V. Kachkanov, G. Laan, S. Dhesi, S. Cavill, M. Wallace, K. O’Donnell, and Y. Fujiwara, “Induced magnetic moment of Eu3+ ions in GaN,” Scientific Reports 2, 969 (2012).
 
[50]  E. Litwin-Staszewska, T. Suski, R. Piotrzkowski, I. Grzegory, and M. Bockowski, “Temperature dependence of electrical properties of Gallium-Nitride single crystals doped with Mg and their evolution with annealing,” Journal of Applied Physics 89, 7960-7965 (2001).
 
[51]  I. Rogozin, A. Georgobiani, and M. Kotlyarevsky, “VN-Mg defect complexes as compensating centers in GaN:Mg,” Inorganic Materials 44, 1342-1347 (2008).
 
[52]  I. Rogozin, and A. Georgobiani “Theoretical analysis of defect formation in GaN:Mg crystals,” Bulletin of the Lebedev Physics Institute 34, 3-13 (2007).
 
[53]  I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, “Photoluminescence of Mg-doped p-Type GaN and electroluminescence of GaN pn Junction LED,” Journal of Luminescence 48-49, 666-670 (1991).
 
[54]  S. Hashimoto, T. Nakamura, Y. Honda, and H. Amano, “Novel activation process for Mg-implanted GaN,” Journal of Crystal Growth 388, 112-115 (2014).
 
[55]  L. Eckeya, U. Gfuga, J. Holsta, A. Hoffmanna, B. Schinellerb, K. Heimeb, M. Heukenc, O. Schonc, and R. Beccardc, “Compensation effects in Mg-doped GaN epilayers,” Journal of Crystal Growth 189-190, 523-527 (1998).
 
[56]  M. Reshchikov, G. Yi, and B. Wesseles, “Behavior of 2.8- and 3.2-eV Photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Physics Review B 59, 13176-13183 (1999).
 
[57]  S. Kim, J. Lee, C. Huh, N. Park, H. Kim, I. Lee, and S. Park, “Reactivation of Mg acceptor in Mg-doped GaN by nitrogen plasma treatment,” Applied Physics Letters 76, 3079-308 (2000).
 
[58]  J. Sheu, P. Chen, C. Shin, M. Lee, P. Liao, and W. Lai, “Manganese-doped AlGaN/GaN heterojunction solar cells with intermediate band absorption,” Solar Energy Materials and Solar Cells 157, 727-732 (2016).
 
[59]  H. Ohno, “Making nonmagnetic semiconductors ferromagnetic,” Science 281, 951-956 (1998).
 
[60]  D. Mahony, J. Lunney, G. Tobin, and E. McGlynn, “Pulsed laser deposition of manganese doped GaN thin films,” Solid State Electronics 47, 533-537 (2003).
 
[61]  H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Advanced Materials 157, 4641-4646 (2009).
 
[62]  Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” Journal of Physics D: Applied Physics 43, 354002 (2009).
 
[63]  H. Kim, S. Park, H. Hwang, and N. Park, “Lateral current transport path, a model for GaN-based light-emitting diodes: applications to practical device designs,” Applied Physics Letters 81, 1326-1328 (2002).
 
[64]  Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” Journal of Materials Chemistry C 2, 4967-4973 (2014).
 
[65]  E. Repo, S. Rengaraj, S. Pulkka, E. Castangnoli, S. Suihkonen, M. Sopanen, and M. Sillanp, “Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation,” Separation and Purification Technology 120, 206-214 (2013).
 
[66]  S. Hong, C. Cho, S. Lee, S. Yim, W. Lim, S. Kim, and S. Park, “Localized surface plasmon-enhanced near-ultraviolet emission from InGaN/GaN light-emitting diodes using silver and platinum nanoparticles,” Optics Express 21, 3138-3144 (2013).
 
[67]  M. Fischer, M. Wahl, and G. Friedrichs, “Design and field application of a UV-LED based optical fiber biofilm sensor,” Biosensors and Bioelectronics 33, 172-178 (2012).
 
[68]  W. Phillips, E. Thrush, Y. Zhang, and C. Humphreys, “Studies of efficiency droop in GaN based LEDs,” Physica Status Solidi C 9, 765-769 (2012).
 
[69]  T. Okimoto, M. Tsukihara, K. Kataoka, A. Kato, K. Nishino, Y. Naoi, and S. Sakai, “GaN- and AlGaN-based UV-LEDs on sapphire by metal-organic chemical vapor deposition,” Physica Status Solidi C 5, 3066-3068 (2008).
 
[70]  X. Li, D. Zhao, D. Jiang, Z. Liu, P. Chen, J. Zhu, L. Le, J. Yang, X. He, S. Zhang, B. Zhang, J. Liu, and H. Yang, “The significant effect of the thickness of Ni film on the performance of the Ni/Au Ohmic contact to p-GaN,” Journal of Applied Physics 116, 163708 (2014).
 
[71]  S. Han, D. Lee, S. Lee, C. Cho, M. Kwon, S. Lee, D. Noh, D. Kim, Y. Kim, and S. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Applied Physics Letters 94, 231123 (2009).
 
[72]  D. Xu, H. Yang, D. Zhao, S. Li, and R. Wu, “Room-temperature optical transitions in Mg-doped cubic GaN/GaAs(100) grown by metalorganic chemical vapor deposition,” Applied Physics Letters 87, 2064-2066 (2000).
 
[73]  C. Jia, T. Yu, H. Lu, C. Zhong, Y. Sun, Y. Tong, and G. Zhang, “Performance improvement of GaN-based LEDs with step stage InGaN/GaN strain relief layers in GaN-based blue LEDs,” Optics Express 21, 8444-8449 (2013).
 
[74]  Z. Quan, L. Wang, C. Zheng, J. Liu, and F. Jiang, “Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes,” Journal of Applied Physics 116,183107 (2014).
 
[75]  J. Tsao, M. Crawford, M. Coltrin, A. Fischer, D. Koleske, G. Subramania, G. Wang, J. Wierer, and R. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Advanced Optical Materials 2, 809-836 (2014).
 
[76]  J. Iveland, L. Martinelli, J. Peretti, J. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Physics Review Letters 110, 177406-177415 (2013).
 
[77]  T. Lu, S. Li, C. Liu, K. Zhang, Y. Xu, J. Tong, L. Wu, H. Wang, X. Yang, Y. Yin, G. Xiao, and Y. Zhou, “Advantages of GaN based light emitting diodes with a p-InGaN hole reservoir layer,” Applied Physics Letters 100, 141106-141113 (2012).
 
[78]  Z. Ju, W. Liu, Z. Zhang, S. Tan, Y. Ji, Z. Kyaw, X. Zhang, S. Lu, Y. Zhang, B. Zhu, N. Hasanov, X. Sun, and H. Demir, “Improved hole distribution in InGaN/GaN light emitting diodes with graded thickness quantum barriers,” Applied Physics Letters 102, 243504-243513 (2013).
 
[79]  C. Qin, Y. Gu, X. Sun, X. Wang, and Y. Zhang, “Structural dependence of piezoelectric size effects and macroscopic polarization in ZnO nanowires: A first-principles study,” Nano Research 8, 2073-2081 (2015).
 
[80]  C. Wang, S. Chang, P. Ku, J. Li, Y. Lan, C. Lin, H. Yang, H. Kuo, T. Lu, S. Wang, and C. Chang, “Hole transport improvement in InGaN/GaN light emitting diodes by graded composition multiple quantum barriers,” Applied Physics Letters 99, 171106-171113 (2011).
 
[81]  H. Kaufmann, P. Schlotter, H. Obloh, K. Kohler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Physics Review B 62, 10867-10872 (2000).
 
[82]  Z. Ju, W. Liu, Z. Zhang, S. Tan, Y. Ji, Z. Kyaw, X. Zhang, S. Lu, Y. Zhang, B. Zhu, N. Hasanov, X. Sun, and H. Demir, “Improved hole distribution in InGaN/GaN light emitting diodes with graded thickness quantum barriers,” Applied Physics Letters 102, 243504-243513 (2013).
 
[83]  R. Vaxenburg, A. Rodina, E. Lifshitz, and A. Efros, “The role of polarization fields in Auger-induced efficiency droop in nitride based light-emitting diodes,” Applied Physics Letters 103, 221111-221115 (2013).
 
[84]  H. Ryu and W. Choi, “Optimization of InGaN/GaN superlattice structures for high-efficiency vertical blue light-emitting diodes,” Journal of Applied Physics 114, 173101 (2013).
 
[85]  M. Mikulics, A. Winden, M. Marso, A. Moonshiram, H. Luth, D. Grutzmacher, and H. Hardtdegen, “Nano-light-emitting-diodes based on InGaN mesoscopic structures for energy saving optoelectronics,” Applied Physics Letters 109, 041103 (2016).
 
[86]  M. Mikulics, Y. Arango, A. Winden, R. Adam, A. Hardtdegen, D. Grutzmacher, E. Plinski, D. Gregusova, J. Novak, P. Kordos, A. Moonshiram, M. Marso, Z. Sofer, H. Luth, and H. Hardtdegen, “Direct electro-optical pumping for hybrid CdSe nanocrystal/III-nitride based nano-light emitting diodes,” Applied Physics Letters 108, 061107 (2016).
 
[87]  M. Liu, C. Lin, and C. Chan, “Output power enhancement of GaN-based flip-chip light-emitting diodes via conical structures generated by a monolayer of nanospheres,” AIP Advances 6, 115013 (2016).
 
[88]  L. Li, Y. Zhang, L. Yan, J. Jiang, X. Han, G. Deng, C. Chi, and J. Song, “n-ZnO/p-GaN heterojunction light emitting diodes featuring a buried polarization induced tunneling junction,” AIP Advances 6, 125204 (2016).
 
[89]  J. Jiang, Y. Zhang, C. Chi, Z. Shi, L. Yan, P. Li, B. Zhang, and G. Du, “Improved ultraviolet emission performance from polarization-engineered n-ZnO/p-GaN heterojunction diode,” Applied Physics Letters 108, 063505 (2016).
 
[90]  L. Geelhaar, C. Cheze, B. Jenichen, O. Brandt, C. Pfuller, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. Dimitrakopulos, T. Karakostas, L. Lari, P. Chalker, M. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” IEEE Journal of Selected Topics in Quantum Electronics 17, 878-888 (2011).
 
[91]  C. Li, S. Liu, T. Luk, J. Figiel, I. Brener, S. Bruecka and G. Wang, “Intrinsic polarization control in rectangular GaN nanowire lasers,” Nanoscale 8, 5682-5687 (2016).
 
[92]  T. Kuykendall, A. Schwartzberg, and S. Aloni, “Gallium nitride nanowires and heterostructures: Toward Color-Tunable and White Light Sources,” Advanced Materials 27, 5805-5812 (2015).
 
[93]  Y. Song, R. Zhu, and Y. Wang, “Active noise filtering for X-band GaN transmitters with bitstream Modulations,” IEEE Transactions on Microwave Theory and Techniques 65, 1-9 (2017).
 
[94]  A. Hurtado, H. Xu, J. Wright, S. Liu, Q. Li, G. Wang, T. Luk, J. Figiel, K. Cross, G. Balakrishnan, L. Lester, and I. Brener, “Polarization switching in GaN nanowire lasers,” Applied Physics Letters 103, 251107 (2013).
 
[95]  P. Upadhya, J. Martinez, Q. Li, G. Wang, B. Swartzentruber, A. Taylor, and R. Prasankumar, “Space and time resolved spectroscopy of single GaN nanowires,” Applied Physics Letters 106, 263103 (2015).
 
[96]  B. Ming, R. Wang, C. Yam, L. Xu, W. Lau, and H. Yan, “Bandgap engineering of GaN nanowires,” AIP Advances 6, 055018 (2016).
 
[97]  F. Yu, D. Rummler, J. Hartmann, L. Caccamo, T. Schimpke, M. Strassburg, A. Gad, A. Bakin, H. Wehmann, B. Witzigmann, H. Wasisto, and A. Waag, “Vertical architecture for enhancement mode power transistors based on GaN nanowires,” Applied Physics Letters 108, 213503 (2016).
 
[98]  R. Reznik, K. Kotlyar, I. Ilkiv, I. Soshnikov, S. Kukushkin, A. Osipov, E. Nikitina, and G. Cirlin, “MBE growth and optical properties of GaN nanowires on SiC/Si(111) hybrid substrate,” AIP Conference Proceedings 1748, 040003 (2016).
 
[99]  S. Zhao, S. Woo, S. Sadaf, Y. Wu, A. Pofelski, D. Laleyan, R. Rashid, Y. Wang, G. Botton, and Z. Mi, “Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics,” Applied Materials 4, 086115 (2016).
 
[100]  K. Im, C. Won, S. Vodapally, R. Caulmilone, S. Cristoloveanu, Y. Kim, and J. Lee, “Fabrication of normally-off GaN nanowire gate-all-around FET with top-down approach,” Applied Physics Letters 109, 143106 (2016).
 
[101]  A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and high-efficiency InGaN-based light emitters,” IEEE Transactions on Electron Devices 57, 79-87 (2010).
 
[102]  L. Wang, Z. Zhang, and N. Wang, “Current crowding phenomenon: Theoretical and direct correlation with the efficiency drop of light emitting diodes by a modified ABC model,” IEEE Journal of Quantum Electronics 51, 1-9 (2015).
 
[103]  J. Cho, E. Schubert, and J. Kim, “Efficiency droop in light emitting diodes: Challenges and countermeasures,” Laser Photonics Review 7, 408-421 (2012).
 
[104]  L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. Feng, Y. Lee, L. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics indual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” Journal of Applied Physics 112, 083101 (2012).
 
[105]  E. Yu, G. Sullivan, P. Asbeck, C. Wang, D. Qiao, and S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors,” Applied Physics Letters 71, 2794 (1997).
 
[106]  S. Valdueza-Felip, L. Rigutti, F. Naranjo, P. Ruterana, J. Mangeney, F. Julien, M. Gonzalez-Herraez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum wells with high In-content,” Applied Physics Letters 101, 062109 (2012).
 
[107]  S. Liu, P. Li, W. Lan, and W. Lin, “Improvements of AlGaN/GaN p-i-n UV sensors with graded AlGaN layer for the UV-B (280-320 nm) detection,” Materials Science and Engineering B 122, 196-200 (2005).
 
[108]  V. Jmerik, E. Lutsenko, and S. Ivanov, “Plasma-assisted molecular beam epitaxy of AlGaN heterostructures for deep-ultraviolet optically pumped lasers,” Physica Status Solidi A 210, 439-450 (2013).
 
[109]  S. Schulz, D. Tanner, E. O'Reilly, M. Caro, F. Tang, J. Griffiths, F. Oehler, M. Kappers, R. Oliver, C. Humphreys, D. Sutherland, M. Davies, and P. Dawson, “Theoretical and experimental analysis of the photoluminescence and photoluminescence excitation spectroscopy spectra of m-plane InGaN/GaN quantum wells,” Applied Physics Letters 109, 223102 (2016).
 
[110]  J. Selles, V. Crepel, I. Roland, M. El Kurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Applied Physics Letters 109, 231101 (2016).
 
[111]  J. Yang, D. Zhao, D. Jiang, P. Chen, J. Zhu, Z. Liu, L. Le, X. Li, X. He, J. Liu, H. Yang, Y. Zhang, and G. Du, “Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness,” Journal of Applied Physics 117, 055709 (2015).