American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2014, 2(2), 26-30
DOI: 10.12691/ajn-2-2-3
Open AccessArticle

Equation of State for the Study of Temperature Dependence of Volume Thermal Expansion of Nanomaterials

Mahipal Singh1, and Madan Singh2

1Department of Physics, R.H. Govt. P. G. College, Kashipur, Uttarakhand, India

2Department of Physics and Electronics, National University of Lesotho, Roma 180, Lesotho

Pub. Date: November 30, 2014

Cite this paper:
Mahipal Singh and Madan Singh. Equation of State for the Study of Temperature Dependence of Volume Thermal Expansion of Nanomaterials. American Journal of Nanomaterials. 2014; 2(2):26-30. doi: 10.12691/ajn-2-2-3

Abstract

A new integral form of equation of state (IFEOS) for volume thermal expansion has been established and used to study the volume thermal expansion of nanomaterials under the effect of temperature. A wide variety of nanomaterials such as fullerene (C60), 20 nm-Ni, 15 nm-(80Ni+20Fe), n-ZnO, n-TiO2 and n-NiO has been considered to analyze the effect of temperature on them. The results obtained have been compared with available experimental data as well as other theoretical approaches. Excellent agreement between theory and available experimental data supports the validity of newly established integral form of equation of state (IFEOS) for nanomaterials.

Keywords:
equation of state nanomaterials volume thermal expansion temperature

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  A. S. Edelstein, R. C. Cammarata, Nanomaterials: Synthesis, Properties and Applications (Institute of Physics, Bristol, England), 1996.
 
[2]  H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature, 318 (1985) 162.
 
[3]  J. E. Fischer, P. A. Heiney, A. R. Mcghie, W. J. Romanow, A. M. Denenstein, J. P. Mccauley, A.B. Smith III, Science, 252 (1991) 1288.
 
[4]  A. Lundin, B. Sundquist, P. Skoglund, A. Fransson, S. Pettersson, Solid State Commun., 84 (1992) 879.
 
[5]  E. Bonetti, E. G. Campari, L. Pasquini, J. Appl. Phys., 84 (1998) 4219.
 
[6]  B. Chain, D. Penwell, M. B. Kruger, Solid State Commun., 115 (2000) 191.
 
[7]  B, Sundqvist, Solid State Commun., 37 (1981) 289.
 
[8]  K. W. Katahara, M. H. Manghnani, E. S. Fisher, J. Phys. F: Met. Phys., 9 (1979) 773.
 
[9]  K. Kusaba, Y. Syono, T. Kikegawa, Proc. Jpn. Acad. B, 75 (1999) 1.
 
[10]  V. L. Solozhenko, O. O. Kurakevich, P. S. Sokolov, A. N. Baranov, J. Phys. Chem. A, 115 (2011) 4354.
 
[11]  D. C. Look, Mater. Sci. Eng. B, 80 (2001) 383.
 
[12]  J. S. Lee, K. Park, Journal of Crystal Growth, 254 (3-4) (2003) 423.
 
[13]  P. H. Borse, L. S. Kankate, F. Dassenoy, W. Vogel, Journal of Materials Science, 13 (2002) 553.
 
[14]  V. Biju, A. M. Khadar, Mater. Sci. Eng. A, 304 (2001) 814.
 
[15]  S. C. Kim, T. H. Kwon, J. Phys. Chem. Soilds, 53 (1992) 539.
 
[16]  Y. Kuru, M. Wohlschlogel, U. Welzel, E. J. Mittemeijer, Applied Physics Letters, 90 (2007) 243113.
 
[17]  R. Seelabouina, N. Phatak, R. P Gulve, H. P. Leirmann, S. K. Saxena, Thermal Conduct., 27 (2005) 647.
 
[18]  Jeewan Chandra, Deepika Kandpal, B. R. K. Gupta, High Temp-High Press, 37 (2008) 325.
 
[19]  Jeewan Chandra, Deepika Kandpal, B. R. K. Gupta, Physica B, 404 (2009) 1087.
 
[20]  A. K. Srivastava, B. R. K. Gupta, Indian J of Pure and Appl. Phys., 46 (2008) 406.
 
[21]  K. Y. Singh, B. R. K. Gupta, Physica B, 334 (2003) 266.
 
[22]  Uma D Sharma, H. Joshi, M. Kumar, Indian J of Pure & Appl. Phys., 48 (2010) 663.
 
[23]  Y. K. Kwon, S. Berber, D. Tomanek, Phys. Rev. Lett., 92 (2004) 015901.
 
[24]  M. Born, K. Huang, Dynamical Theory of Crystal Lattice (Oxford University Press, Oxford) 1954.
 
[25]  S. S. Bedi, M. Singh, J. Singh, Solid State Commun. 89 (1994), 265.
 
[26]  M. Ross, Phys. Rev. B, 21 (1980) 3140.
 
[27]  P. Kuchchal, N. Dass, Pramana J. Phys., 52 (1999) 75.
 
[28]  G. Parsafar, J. A. Mason, Phys. Rev. B, 19 (1994) 3049.
 
[29]  P. Vinet, J. R. Smith, J. Ferrante, J. H. Rose, Phys. Rev. B, 35 (1987) 1945.
 
[30]  O. L. Anderson, K Zou, Phys. Chem. Miner, 16 (1989) 642.
 
[31]  Z. H. Fang, Physica B, 357 (2005) 433.
 
[32]  N. Chuanhui, S. Huang, W. Huang, Applied Physics Research, 2 (1) (2010) 144.
 
[33]  Mahipal Singh, International J. of Phys. & Research, 3 (4) (2013) 55.
 
[34]  T Turi, U. Erb, Mater. Sci. Eng. A, 204 (1995) 34.