American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Nanomaterials. 2020, 8(1), 32-47
DOI: 10.12691/ajn-8-1-4
Open AccessReview Article

Review of GaN Nanowires Based Sensors

Ahmed M. Nahhas1,

1Department of Electrical Engineering, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

Pub. Date: August 19, 2020

Cite this paper:
Ahmed M. Nahhas. Review of GaN Nanowires Based Sensors. American Journal of Nanomaterials. 2020; 8(1):32-47. doi: 10.12691/ajn-8-1-4


This paper presents a review of the recent advances of GaN based nanowires sensors. GaN has gained substantial interest in the research area of wide band gap semiconductors due to its unique electrical, optical and structural properties. GaN nanostructured material exhibits many advantages for nanodevices due to its higher surface-to-volume ratio as compared to thin films. GaN nanostructured material has the ability to absorb ultraviolet (UV) radiation and useful in many optical applications. Recently, GaN nanostructured based devices have gained much attention due to their various potential applications specially in nanowires sensors. GaN nanowires sensors have been used in many devices such as gas sensors, biosensors, and pressure sensors. The recent aspects of GaN based nanowires sensors are presented and discussed. The performance of several sensors based devices which have been demonstrated on GaN is reviewed. The structural, electrical, and optical properties are also reviewed.

gallium nitride (GaN) nanostructured doping nanowires sensors ultraviolet (UV)

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  S. Madhusoodhanan, S. Sandoval, Y. Zhao, M. Ware, and Z. Chen, “A Highly linear temperature sensor using GaN-on-SiC heterojunction diode for high power applications,” IEEE Electron Device Letters 38, 1105-1108 (2017).
[2]  Y. Guan, Y. Wang, D. Xu, and W. Wang, “A 1MHz half-bridge resonant DC/DC converter based on GaN FETs and planar magnetics,” IEEE Transactions on Power Electronics 32, 2876-2891 (2017).
[3]  J. Wu, W. Walukiewicz, K. Yu, W. Shan, and J. Ager, “Superior radiation resistance of In 1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” Journal of Applied Physics 94, 6477-6482 (2003).
[4]  U. Mishra, L. Shen, T. Kazior, and Y. Wu, “GaN-based RF power devices and amplifiers,” Proceedings of IEEE 96, 287-305 (2008).
[5]  R. Sun, G. Wang, and Z. Peng, “Fabrication and UV photoresponse of GaN nanowire-film hybrid films on sapphire substrates by chemical vapor deposition method,” Materials Letters 217, 288-291 (2018).
[6]  V. Voronenkov, N. Bochkareva, R. Gorbunov, P. Latyshev, Y. Lelikov, Y. Rebane, A. Tsyuk, A. Zubrilov, and Y. Shreter, “Nature of V-shaped defects in GaN,” Japanese Journal of Applied Physics 52, 08JE14 (2013).
[7]  C. Skierbiszewski, “Growth and characterization of AlInN/GaInN quantum wells for high-speed intersubband devices at telecommunication wavelengths,” Proceedings of SPIE 6121, 612109 (2006).
[8]  B. Gao, H. Liu, Q. Kuang, W. Zhou, and L. Cao, “A novel model of photo-carrier screening effect on the GaN based p-i-n ultraviolet detector,” Science China Physics 53, 793-801 (2010).
[9]  T. Zimmermann, M. Neuburger, P. Benkart, F. Hernandez-Guillen, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, and E. Kohn, “Piezoelectric GaN sensor structures,” IEEE Electron Device Letters 27, 309-312 (2006).
[10]  Y. Ikawa, K. Lee, J. Ao, and Y. Ohno, “Two-dimensional device simulation of AlGaN/GaN heterojunction FET side-gating effect,” Japanese Journal of Applied Physics 53, 114302 (2014).
[11]  H. Song, S. Lee, “Red light emitting solid state hybrid quantum dot-near-UV GaN LED devices,” Nanotechnology 18, 255202 (2007).
[12]  S. Nakamura, “Current status of GaN-based solid-state lighting, “Materials Research 34, 101-107 (2009).
[13]  K. Song and H. Kim, “Optical properties of undoped a-plane GaN grown with different initial growth pressures,” Japanese Journal of Applied Physics 51, 092101 (2012).
[14]  M. Reshchikov, H. Morkoc, “Luminescence properties of defects in GaN,” Journal of Applied Physics 97, 061301-061395 (2005).
[15]  A. Slimane, A. Najar A, T. Ng, and B. Ooi, “Thermal annealing induced relaxation of compressive strain in porous GaN structures,” Proceedings of the 25th of IEEE Photonics Conference, 921-922 (2012).
[16]  A. M. Nahhas, “Review of GaN Nanostructured Based Devices,” American Journal of Nanomaterials 6, 1-14 (2018).
[17]  D. Li, X. Sun, and H. Song, “Realization of a high- performance GaN UV detector by nanoplasmonic enhancement,” Advanced Materials 24, 845-849 (2012).
[18]  M. Hetzl, F. Schuster, A. Winner, S. Weiszer, and M. Stutzmann, “GaN nanowires on diamond,” Materials Science in Semiconductor Processing 48, 65-78 (2016).
[19]  M. Qaeed, K. Ibrahim, K. Saron, M. Mukhlif, A. Ismail, N. Elfadill, K. Chahrour, Q. Abdullah, and K. Andiroba, “New issue of GaN nanoparticles solar cell,” Current Applied Physics 15, 499-503 (2015).
[20]  R. Yu, L. Dong, C. Pan, S. Niu, H. Liu, W. Liu, S. Chua, D. Chi, and Z. Wang, “Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics,” Advanced Materials 24, 3532-3537 (2012).
[21]  Z. Li, X. Chen, H. Li, Q. Tu, Z. Yang, Y. Xu, and B. Hu, “Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires,” Applied Physics A 72, 629-632 (2001).
[22]  J. Sodre, E. Longo, C. Taft, J. Martins, and J. Santos, “Electronic structure of GaN nanotubes,” Comptes Rendus Chimie 20, 190-196 (2017).
[23]  M. Lee, D. Mikulik, and S. Park, “Thick GaN growth via GaN nanodot formation by HVPE,” CrystEngComm 19, 930-935 (2017).
[24]  M. Reddeppa, B. Park, S. Lee, N. Hai, M. Kim, and J. Oh, “Improved Schottky behavior of GaN nanorods using H2 plasma treatment,” Current Applied Physics 17, 192-196 (2017).
[25]  S. Elashmawi, A. Abdelghany, and N. Hakeem, “Quantum confinement effect of CdS nanoparticles dispersed within PVP/PVA nanocomposites,” Journal of Materials Science 24, 2956-2961 (2013).
[26]  T. Narita, K. Kataoka, M. Kanechika, T. Kachi, and T. Uesugi, “Ion implantation technique for conductivity control of GaN,” IEEE 17th International Workshop on Junction Technology (IWJT), 87-90 (2017).
[27]  S. Matsunaga, S. Yoshida, T. Kawaji, and T. Inada, “Silicon implantation in epitaxial GaN layers: Encapsulant annealing and electrical properties,” Journal of Applied Physics 95, 2461 (2004).
[28]  Y. Irokawa, O. Fujishima, T. Kachi, and Y. Nakano, “Electrical activation characteristics of silicon implanted GaN,” Journal of Applied Physics 97, 083505 (2005).
[29]  C. Ostermaier, P. Lagger, M. Alomari, P. Herfurth, D. Maier, A. Alexewicz, M. Forte-Poisson, S. Delage, G. Strasser, D. Pogany, and E. Kohn, “Reliability investigation of the degradation of the surface passivation of InAlN/GaN HEMTs using a dual gate structure,” Microelectronics and Reliability 52, 1812-1815 (2012).
[30]  Y. Kong, L. Liu, S. Xia, Y. Diao, H. Wang, and M. Wang, “Optoelectronic properties of Mg doping GaN nanowires,” Optical and Quantum Electronics 48, 1-12 (2016).
[31]  C. Walle, J. Neugebauer, C. Stamp, M. Mccluskeyc, and N. Johnson, “Defects and defect reactions in semiconductor nitrides,” Acta Physica Polonica A 96, 613-627 (1999).
[32]  F. Naranjo, E. Calleja, Z. Bougrioua, A. Trampert, X. Kong, and K. Ploog, “Efficiency optimization of p-type doping in GaN:Mg layers grown by molecular-beam epitaxy,” Journal of Crystal Growth 270, 542-546 (2004).
[33]  T. Narita, T. Kachi1, K. Kataoka and T. Uesugi, “P-type doping of GaN(0001) by magnesium ion implantation,” Applied Physics Express 10, 16501 (2017).
[34]  X. Cai, A. Djurisic, M. Xie, H. Liu, X. Zhang, J. Zhu, and H. Yang, “Ferromagnetism in Mn and Cr doped GaN by thermal diffusion,” Materials Science and Engineering B 117, 292-295 (2005).
[35]  G. Aluri, M. Gowda, N. Mahadik, S. Sundaresan, M. Rao, J. Schreifels, J. Freitas, S. Qadri, and Y. Tian, “Microwave annealing of Mg-implanted and in situ Be-doped GaN,” Journal of Applied Physics 108, 083103 (2010).
[36]  W. Khalfaoui. T. Oheix, G. El‐ Zammar, R. Benoit, F. Cayrel, E. Faulques, F. Massuyeau, A. Yvon, E. Collard, and D. Alquier,“Impact of rapid thermal annealing on Mg‐ implanted GaN with a SiOx/AlN cap‐layer,” Physica Status Solidi 214, 1-8 (2017).
[37]  D. As, U. Kohler, M. Lubbers, J. Mimkes, and K. Lischka, “p- Type doping of cubic GaN by carbon,” Physica Status Solidi A 188, 699-703 (2001).
[38]  H. Yacoub, C. Mauder, S. Leone, M. Eickelkamp, D. Fahle, M. Heuken, H. Kalisch, and A. Vescan, “Effect of different carbon doping techniques on the dynamic properties of GaN-on-Si buffers,” IEEE Transactions on Electron Devices 64, 991-997 (2017).
[39]  A. M. Nahhas, H. Kim, and J. Blachere, “ Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer,” Applied Physics Letters 78, 1511-1513 (2001).
[40]  E. Kim, B. Lee, A. M. Nahhas, and H. Kim, “ Thin-film-induced index change and channel waveguiding in epitaxial GaN films,” Applied Physics Letters 77, 1747-1749 (2000).
[41]  D. Bisi, M. Meneghini, F. Marino, D. Marcon, S. Stoffels, M. Hove, S. Decoutere, G. Meneghesso, and E. Zanoni, “Kinetics of buffer-related RON-increase in GaN-on-Silicon MIS-HEMTs,” IEEE Electron Device Letters 35, 1004-1006 (2014).
[42]  C. Seager, A. Wright, J. Yu, and W. Gotz, “Role of carbon in GaN,” Journal of Applied Physics 92, 6553- 6560 (2002).
[43]  H. Tang, J. Webb, J. Bardwell, S. Raymond, J. Salzman, and C. Uzan-Saguy, “Properties of carbon-doped GaN,” Applied Physics Letters 78, 757-759 (2001).
[44]  D. Koleske, A. Wickenden, R. Henry, and M. Twigg, “Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN,” Journal of Crystal Growth 242, 55-69 (2002).
[45]  N. Weimann, L. Doppalapudi, H. Ng, and T. Moustakas, “Scattering of electrons at threading dislocations in GaN,” Journal of Applied Physics 83, 3656-3659 (1998).
[46]  K. O’Donnell, P. Edwards, M. Kappers, K. Lorenz, E. Alves, and M. Bockowski, “Europium-doped GaN (Mg): beyond the limits of the light-emitting diode,” Physics Status Solidi C 11, 662-665 (2014).
[47]  K. O'Donnell, B. Hourahine, “Rare earth doped III- nitrides for optoelectronics,” The European Physical Journal 36, 91-103 (2006).
[48]  A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/Europium- doped/n-type Gallium Nitride light-emitting diode under current injection,” Applied Physics Express 2, 071004 (2009).
[49]  I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Bockowski, “Identification of the prime optical center in GaN:Eu3+,” Physics Review B 81, 085209 (2010).
[50]  K. Lorenz, E. Alves, I. Roqan, K. O'Donnell, A. Nishikawa, Y. Fujiwara, and M. Bockowski, “Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy,” Applied Physics Letters 97, 111911 (2010).
[51]  V. Kachkanov, G. Laan, S. Dhesi, S. Cavill, M. Wallace, K. O’Donnell, and Y. Fujiwara, “Induced magnetic moment of Eu3+ ions in GaN,” Scientific Reports 2, 969 (2012).
[52]  E. Litwin-Staszewska, T. Suski, R. Piotrzkowski, I. Grzegory, and M. Bockowski, “Temperature dependence of electrical properties of Gallium-Nitride single crystals doped with Mg and their evolution with annealing,” Journal of Applied Physics 89, 7960-7965 (2001).
[53]  I. Rogozin, A. Georgobiani, and M. Kotlyarevsky, “VN-Mg defect complexes as compensating centers in GaN:Mg,” Inorganic Materials 44, 1342-1347 (2008).
[54]  I. Rogozin, A. Georgobiani “Theoretical analysis of defect formation in GaN:Mg crystals,” Bulletin of the Lebedev Physics Institute 34, 3-13 (2007).
[55]  I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, “Photoluminescence of Mg-doped p-Type GaN and electroluminescence of GaN pn Junction LED,” Journal of Luminescence 48-49, 666-670 (1991).
[56]  S. Hashimoto, T. Nakamura, Y. Honda, and H. Amano, “Novel activation process for Mg-implanted GaN,” Journal of Crystal Growth 388, 112-115 (2014).
[57]  L. Eckeya, U. Gfuga, J. Holsta, A. Hoffmanna, B. Schinellerb, K. Heimeb, M. Heukenc, O. Schonc, and R. Beccardc, “Compensation effects in Mg-doped GaN epilayers,” Journal of Crystal Growth 189-190, 523-527 (1998).
[58]  M. Reshchikov, G. Yi, and B. Wesseles, “Behavior of 2.8- and 3.2-eV Photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities,” Physics Review B 59, 13176-13183 (1999).
[59]  S. Kim, J. Lee, C. Huh, N. Park, H. Kim, I. Lee, and S. Park, “Reactivation of Mg acceptor in Mg-doped GaN by nitrogen plasma treatment,” Applied Physics Letters 76, 3079-308 (2000).
[60]  J. Sheu, P. Chen, C. Shin, M. Lee, P. Liao, and W. Lai, “Manganese-doped AlGaN/GaN heterojunction solar cells with intermediate band absorption,” Solar Energy Materials and Solar Cells 157, 727-732 (2016).
[61]  H. Ohno, “Making nonmagnetic semiconductors ferromagnetic,” Science 281, 951-956 (1998).
[62]  D. Mahony, J. Lunney, G. Tobin, and E. McGlynn, “Pulsed laser deposition of manganese doped GaN thin films,” Solid State Electronics 47, 533-537 (2003).
[63]  L. Geelhaar, C. Cheze, B. Jenichen, O. Brandt, C. Pfuller, S. Munch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias,P. Komninou, G. Dimitrakopulos, T. Karakostas, L. Lari, P. Chalker, M. Gass, and H. Riechert, “Properties of GaN Nanowires Grown by Molecular Beam Epitaxy,” IEEE Journal of Selected Topics in Quantum Electronics 17, 878-888 (2011).
[64]  C. Li, S. Liu, T. Luk, J. Figiel, I. Brener, S. Bruecka and G. Wang, “Intrinsic polarization control in rectangular GaN nanowire lasers,” Nanoscale 8, 5682-5687 (2016).
[65]  H. Jia, L. Guo, W. Wang, and H. Chen, “Recent progress in GaN-based light-emitting diodes,” Advanced Materials 157, 4641-4646 (2009).
[66]  Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” Journal of Physics D: Applied Physics 43, 354002 (2009).
[67]  H. Kim, S. Park, H. Hwang, and N. Park, “Lateral current transport path, a model for GaN-based light-emitting diodes: applications to practical device designs,” Applied Physics Letters 81, 1326-1328 (2002).
[68]  Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” Journal of Materials Chemistry C 2, 4967-4973 (2014).
[69]  E. Repo, S. Rengaraj, S. Pulkka, E. Castangnoli, S. Suihkonen,M. Sopanen, and M. Sillanp, “Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation,” Separation and Purification Technology 120, 206-214 (2013).
[70]  S. Hong, C. Cho, S. Lee, S. Yim, W. Lim, S. Kim, and S. Park, “Localized surface plasmon-enhanced near-ultraviolet emission from InGaN/GaN light-emitting diodes using silver and platinum nanoparticles,” Optics Express 21, 3138-3144 (2013).
[71]  T. Okimoto, M. Tsukihara, K. Kataoka, A. Kato, K. Nishino, Y. Naoi, and S. Sakai, “GaN- and AlGaN-based UV-LEDs on sapphire by metal-organic chemical vapor deposition,” Physica Status Solidi C 5, 3066-3068 (2008).
[72]  W. Phillips, E. Thrush, Y. Zhang, and C. Humphreys, “Studies of efficiency droop in GaN based LEDs,” Physica Status Solidi C 9, 765-769 (2012).
[73]  T. Kuykendall, A. Schwartzberg, and S. Aloni, “Gallium nitride nanowires and heterostructures: Toward Color-Tunable and White Light Sources,” Advanced Materials 27, 5805-5812 (2015).
[74]  Y. Song, R. Zhu, and Y. Wang, “Active noise filtering for X-band GaN transmitters with bitstream Modulations,” IEEE Transactions on Microwave Theory and Techniques 65, 1-9 (2017).
[75]  C. Wang, L. Wang, L. Zhang, R. Xi, H. Huang, S. Zhang, and G. Pan, “Electrodeposition of ZnO nanorods onto GaN towards enhanced H2S sensing,” Journal of Alloys and Compounds 790, 363-369 (2019).
[76]  X. Tan, Y. Lv, X. Zhou, X. Song, Y. Wang, G. Gu, H. Guo, S. Liang, Z. Feng, and S. Cai, “High performance AlGaN/GaN pressure sensor with a Wheatstone bridge Circuit,” Microelectronic Engineering 219, 111143 (2020).
[77]  A. M. Nahhas, “Review of AlGaN/GaN HEMTs Based Devices,” American Journal of Nanomaterials 7, 10-21 (2019).
[78]  M. Reddeppa, T. Nguyen, B. Park, S. Kim, and M. Kim, “Low operating temperature NO gas sensors based H2 peroxide treated GaN nanorods,” Physica E 116, 113725 (2020).
[79]  M. Mishraa, N. Bhallac, A. Dashd, and G. Gupta, “Nanostructured GaN and AlGaN/GaN heterostructure for catalyst-free low temperature CO sensing,” Applied Surface Science 481, 379-384 (2019).
[80]  N. Chaturvedi, K. Singh, P. Kachhawa, , R. Lossy, S. Mishra, A. Chauhan, , D. Kharbanda, , A. Jain, , R. Thakur, D. Saxena, P. Khanna, and J. Wuerfl, “AlGaN/GaN HEMT based sensor and system for polar liquid detection,” Sensors and Actuators A 302, 111799 (2020).
[81]  I. Liu, C. Chang, H. Lu, and K. Lin, “H2 sensing performance of a GaN-based Schottky diode with an H2O2 treatment and electroless plating approach,” Sensors & Actuators: B. Chemical 296, 126599 (2019).
[82]  M. Khan, , B. Thomson, , J. Yu, , R. Debnath, , A. Motayed, and M. Rao, “Scalable metal oxide functionalized GaN nanowire for precise SO2 detection,” Sensors & Actuators: B. Chemical 318, 128223 (2020).
[83]  L. Li, X. Li, T. Pu, L. Yang, and J. Ao, “Normally off AlGaN/GaN ion-sensitive field effect transistors realized by photoelectrochemical method for pH sensor application,” Superlattices and Microstructures 128, 99-104 (2019).
[84]  D. Xue, H. Zhang, A. Ahmad, H. Liang, J. Liu, X. Xia, W. Guo, H. Huang, and N. Xu, “Enhancing the sensitivity of the reference electrode free AlGaN/GaN HEMT based pH sensors by controlling the threshold voltage,” Sensors & Actuators: B. Chemical 306, 127609 (2020).
[85]  I. Liu, C. Chang, B. Ke, and K. Lin, “Study of a GaN Schottky diode based H2 sensor with a H2 peroxide oxidation approach and platinum catalytic metal” International Journal of H2 Energy 44, 32351-32361 (2019).
[86]  C. Wang, Z. Wang, R. Xi, L. Zhang, S. Zhang, L. Wang, and G. Pan, “In situ synthesis of flower-like ZnO on GaN using electrodeposition and its application as ethanol gas sensor at room temperature” Sensors & Actuators: B. Chemical 292, 270-276 (2019).
[87]  B. Bartosewicz, P. Andersson, I. Dzięcielewski, B. Jankiewicz, and J. Weyher, “Nanostructured GaN sensors for Surface Enhanced Raman Spectroscopy” Materials Science in Semiconductor Processing 91, 270-276 (2019).
[88]  A. Bag, D. Moon, K. Park, C. Cho, and N. Lee, “Room-temperature-operated fast and reversible vertical-heterostructure diode gas sensor composed of reduced graphene oxide and AlGaN/GaN” Sensors & Actuators: B. Chemical 296, 126684 (2019).
[89]  G. Parish, F. Khir, F. Krishnan, J. Wang, J. Krisjanto, H. Li, G. Umana-Membreno, S. Keller, , U. Mishra, , M. Baker, D. Brett , S. Nener, and M. Myers, “Role of GaN cap layer for reference electrode free AlGaN/GaN-based Ph sensors” Sensors & Actuators: B. Chemical 287, 250-257 (2019).
[90]  I. Liu, C. Chang, Y. Huang, and K. Lin, “Study of a GaN Schottky diode based H2 sensor with a H2 peroxide oxidation approach and platinum catalytic metal” International Journal of H2 Energy 44, 5748-5754 (2019).
[91]  B. Shen, F. Li, Y. Xie, J. Luo, P. Fan, and A. Zhong, “High performance ammonia gas sensor based on GaN honeycomb nanonetwork” Sensors and Actuators A 312, 112172 (2020).