American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2020, 8(1), 18-31
DOI: 10.12691/ajn-8-1-3
Open AccessReview Article

Review of Recent Advances of ZnO Nanowires Based Sensors

Ahmed M. Nahhas1,

1Department of Electrical Engineering, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

Pub. Date: August 12, 2020

Cite this paper:
Ahmed M. Nahhas. Review of Recent Advances of ZnO Nanowires Based Sensors. American Journal of Nanomaterials. 2020; 8(1):18-31. doi: 10.12691/ajn-8-1-3

Abstract

This paper presents the recent advances of the ZnO nanowires based sensors. ZnO has gained a substantial interest in the research areas of the wide band gap semiconductors due to its unique electrical, optical and structural properties. ZnO is considered as one of the major candidates for several electronic and photonic applications. ZnO is considered as a potential contender in optoelectronic applications such as solar cells, surface acoustic wave devices, and ultraviolet (UV) emitters. ZnO as a nanostructured material exhibits many advantages for nanodevices. ZnO nanostructured material has the ability to absorb the UV radiation. ZnO nanowires have received a considerable attention due to the morphological changes with doping. ZnO nanowires are very attractive material for nano-sensors due to their properties induced by the quantum size effects. Recently, ZnO nanowires based devices have gained much attention due to their various potential applications in nanoelectronics devices including gas sensors, nanogenerators, and nano-lasers. The recent aspects of ZnO nanowires based sensors devices are presented and discussed.

Keywords:
Zinc Oxide (ZnO) Nanostructured Doping LEDs Nanowires UV Sensors

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Nahhas, A. M., “Recent Advances of ZnO Based Nanowires and Nanorods Devices,” American Journal of Nanomaterials, 6. 15-23. 2018.
 
[2]  Kim, E., Lee, B., Nahhas, A. M., and Kim., H.,“Thin-film-induced index change and channel waveguiding in epitaxial GaN films,” Applied Physics Letters, 77. 1747-1749. 2000.
 
[3]  Nahhas, A. M.,“ A Review of Zinc-Oxide as Nano Materials and Devices,” International Journal on Recent Trends in Engineering & Technology, 9. 135. 2013.
 
[4]  Nahhas, A. M.,Kim, H., and Blachere, J., “ Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer,” Applied Physics Letters, 78. 1511-1513. 2001.
 
[5]  Li, Y., Bando, Y., and Golberg, D., “ZnO nanoneedles with tip surface perturbations: Excellent field emitters,” Applied Physics Letters, 84. 3603. 2004.
 
[6]  Saito, M., Fujihara, S., “Large photocurrent generation in dye-sensitized ZnO solar cells,” Energy & Environmental Science, 1. 280-283. 2008.
 
[7]  Zhou, J., Wu, X., Xiao, D., Zhuo, M., Jin, H., Luo, J., and Fu, Y. “Deposition of aluminum doped ZnO as electrode for transparent ZnO/glass surface acoustic wave devices,” Surface and Coatings Technology, 320. 39-46. 2017.
 
[8]  Choi, Y., Kang, J., Hwang, D., and Park, S., “Recent advances in ZnO based light-emitting diodes,” IEEE Transactions on Electronic Devices, 57. 26-41. 2010.
 
[9]  Zhang, M., Gao, X., Barra, A., Chang, P., Huang, L., Hellwarth, R., and Lu, J., “Core-shell structured Si/ZnO photovoltaics,” Materials Letters, 140. 59-63. 2015.
 
[10]  Hossaini, H., Moussavi, G., and Farrokhi, M., “Oxidation of diazinon in cns-ZnO/LED photocatalytic process: Catalyst preparation, photocatalytic examination, and toxicity bioassay of oxidation by products,” Separation and purification technology, 174. 320-330. 2017.
 
[11]  Sabah, M., Hassan, Z., Naser, M., Al-hardan, H., and Bououdina, M., “Fabrication of low cost UV photo detector using ZnO nanorods grown onto nylon substrate,” Journal of Materials Science, 26. 1322-1331. 2015.
 
[12]  Pandya, H., Chandra, S., and Vyas, A., “Integration of ZnO nanostructures with MEMS for ethanol sensor,” Sensors and Actuators B, Chemical, 161. 923-928. 2012.
 
[13]  Taube, A., Sochacki, M., Kwietniewski, N., Werbowy, A., Gierałtowska, S., Wachnicki, L., Godlewski, M., and Szmidt, J., “Electrical properties of isotype and anisotype ZnO/4H-SiC heterojunction diodes,” Applied Physics Letters, 110. 1120-1124. 2017.
 
[14]  Sin, L., Arshad, M., Fathil, M., Adzhri, R., Nuzaihan, N., Ruslinda, A., Gopinath, S., and Hashim, U., “Zinc oxide interdigitated electrode for biosensor application,” AIP Conference Proceedings, 1733. 020075. 2016.
 
[15]  Wang, Y., Chen,Y., Song, X., Zhang, Z., She, J., Deng, S., Xu, N., and Chen, J.,“ Electrical properties of fluorine-doped ZnO nanowires formed by biased plasma treatment,” Physica E: Low-dimensional Systems and Nanostructures, 99. 254-260. 2018.
 
[16]  Tvarozek, V., Shtereva, K., Novotny, I., Kovac, J., Sutta, P., Srnanek, R., and Vincze, A., “RF diode reactive sputtering of n- and p-type zinc oxide thin films,” Vacuum, 82. 166-169. 2007.
 
[17]  Liu, G., Rahman, E., and Ban, D., “Performance optimization of p-n homojunction nanowire based piezoelectric nanogenerators through control of doping concentration,” Journal of Applied Physics, 118. 094307. 2017.
 
[18]  Nahhas, A. M.,“Review of GaN/ZnO Hybrid Structures Based Materials and Devices,” American Journal of Nano Research and Applications, 6. 34-53. 2019.
 
[19]  Pemmaraju, C., Archer, T., Hanafin, R., and Sanvito, S., “Investigation of n-type donor defects in Co-doped ZnO,” Journal of Magnetism and Magnetic Materials, 316. e185-e187. 2007.
 
[20]  Saroj, R., Dhar, S., “Relationship between dislocation and the visible luminescence band observed in ZnO epitaxial layers grown on c-plane p-GaN templates by chemical vapor deposition technique,” Journal of Applied Physics, 120. 075701. 2016.
 
[21]  Urgessa, N., Dobson, S., Talla, K., Murape, D., Venter, A., and Botha, J., “Optical and electrical characteristics of ZnO/Si heterojunction,” Physica B, Condensed Matter, 439. 149-152. 2014.
 
[22]  Alivov, R., Kalinina, E., Cherenkov, A., Look, D., Ataev, B., Omaev, A., Chukichev, M., and Bagnall, D., “Fabrication and characterization of n-ZnO/p-AlGaN n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates,” Applied Physics Letters, 83. 4719. 2003.
 
[23]  Alvi, N., Riaz, M., Tzamalis, G., Nur, O., and Willander, M., “Fabrication and characterization of high-brightness light emitting diodes based on n-ZnO nanorods grown by a low-temperature chemical method on p-4H-SiC and p-GaN,” Semiconductor Science and Technology, 25. 065004. 2010.
 
[24]  Li, Y., Meng, J., “Al-doping effects on structure and optical properties of ZnO nanostructures,” Journal of Materials letters, 117. 260-262. 2014.
 
[25]  Chaabouni, Y., Khalfallah, B., and Abaab, M., “Doping Ga effect on ZnO radio frequency sputtered films from a powder target,” Thin Solid Films, 617. 95-102. 2016.
 
[26]  Ahmad, M., Zhao, J., Iqbal, J., Miao, W., Xie, L., Mo, R., and Zhu, J., “Conductivity enhancement by slight indium doping in ZnO nanowires for optoelectronic applications,” Journal of Physics D: Applied Physics, 42. 165406-7. 2009.
 
[27]  Chen, Y., Huang, I., Chang, S., and Hsueh, T., “Photodetector of ZnO nanowires based on through-silicon via approach,” IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), 123-124. 2016.
 
[28]  Yi, G., Wang, C., and Park, W., “ZnO nanorods: synthesis, characterization and applications,” Semiconductor Science and Technology, 20. S22-S34. 2005.
 
[29]  Tan, S., Umar, A., Balouch, A., Yahaya, M., Yap, C., Salleh, M., and Oyama, M., “ZnO nanocubes with (101) basal plane photocatalyst prepared via a low-frequency ultrasonic assisted hydrolysis process,” Ultrasonics Sonochemistry, 21. 754-760. 2014.
 
[30]  Pan, Z., Dai, Z., and Wang, Z., “Nanobelts of semiconducting oxides,” Science, 291. 1947-1949. 2001.
 
[31]  Jianming, J., Xiaoqin, F., and Guibin, C., “Electromechanical properties of a zigzag ZnO nanotube under local torsion,” Journal of Nanoparticle Research, 15. 1-9. 2013.
 
[32]  Mustafa, M., Iqbal, Y., Majeed, U., and Sahdan, M., “Effect of precursor’s concentration on structure and morphology of ZnO nanorods synthesized through hydrothermal method on gold surface,” AIP Conference Proceedings, 1788. 030120. 2017.
 
[33]  Logothetidis, S., Laskarakis, A., Kassavetis, S., Lousinian, S., Gravalidis, C., and Kiriakidis, G., “Optical and structural properties of ZnO for transparent electronics,” Thin Solid Films, 516. 1345-1349. 2008.
 
[34]  Pal, A., Mohan, D., “Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter,” Nanotechnology, 28. 415707-415707. 2017.
 
[35]  Serhane, R., Messaci, S., Lafane, S., Khales, H., Aouimeur, W., Bey, A., and Boutkedjirt, T., “Pulsed laser deposition of piezoelectric ZnO thin films for bulk acoustic wave devices,” Applied Surface Science, 288. 572-578. 2014.
 
[36]  Nie, Y., Deng, P., Zhao, Y., Wang, P., Xing, L., Zhang, Y., and Xue, X., “The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H₂S sensor,” Nanotechnology, 25. 265501. 2014.
 
[37]  Tan, Q., Wang, J., Zhong, X., Zhou, Y., Wang, Q., Zhang, Y., Zhang, X., and Huang, S., “Impact of ZnO Polarization on the characteristics of metal-ferroelectric-ZnO field effect transistor,” IEEE Transactions on Electron Devices, 58. 2738-2742. 2011.
 
[38]  Fail, P., Furtado, C. “Effect of composition on electrical response to humidity of TiO2:ZnO sensors investigated by impedance spectroscopy,” Sensors and Actuators B: Chemical, 181. 720-729. 2013.
 
[39]  Panda, D., Tseng, T., “One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications,” Journal of Materials Science, 48. 6849-6877. 2013.
 
[40]  Zhao, Q., Huang, C., Zhu, R., Xu, J., Chen, L., and Yu, D., “2D planar field emission devices based on individual ZnO nanowires,” Solid State Communications, 151. 1650-1653. 2011.
 
[41]  Lokman, A., Arof, H., Wadi, S., Harith, Z., Rafaie, H., and Nor, R.,Optical fiber relative humidity sensor based on Inline Mach-Zehnder interferometer with ZnO nanowires coating,” IEEE Sensors Journal, 16. 312-316. 2016.
 
[42]  Willander, M., Klason, P., “ZnO nanowires: chemical growth, electrodeposition, and application to intracellular nano-sensors,” Physica Status Solidi, C 5. 3076-3083. 2008.
 
[43]  Lupan, O., Emelchenko, G., Ursaki, V., Chai, G., Redkin, A., Gruzintsev, A., Tiginyanu, I., Chow, L., Ono, L., Cuenya, B., Heinrich, H., and Yakimov, E., “Synthesis and characterization of ZnO nanowires for nanosensor applications,” Materials Research Bulletin, 45.1026-1032. 2010.
 
[44]  Ramgir, N., Kaur, M., Sharma, P., Datta, N., Kailasaganapathi, S., Bhattacharya, S., Debnath, A., Aswal, D., and Gupta, S., “Ethanol sensing properties of pure and Au modified ZnO nanowires,” Sensors and Actuators. B, Chemical, 187. 313-318. 2013.
 
[45]  Zhao, Q., Klason, P., and Willander, M., “Growth of ZnO nanostructures by vapor liquid solid method,” Applied Physics A, 88. 27-30. 2007.
 
[46]  Pan, M., Fenwick, W., Strassburg, M., Li, N., Kang, H., Kane, M., Asghar, A. Gupta, S. Varatharajan, R., Nause, J., El-Zein, N., Fabiano, P., Steiner, T., and Ferguson, I., “Metal organic chemical vapor deposition of ZnO,” Journal of Crystal Growth, 287. 688-693. 2006.
 
[47]  Chiu, S., Huang, J., “Chemical bath deposition of ZnO and Ni doped ZnO nanorod,” Journal of Non-Crystalline Solids, 358. 2453-2457. 2012.
 
[48]  Polsongkram, D., Chamninok, P., Pukird, S., Chow, L., Lupan, O., Chai, G., Khallaf, H., Park, S., and Schulte, A., “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Physica B: Condensed Matter, 403. 3713-3717. 2008.
 
[49]  Wang, L., Chauveau, J., Brenier, R., Sallet, V., Jomard, F., Sartel, C., and Bremond, G., “Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy,” Applied Physics Letters, 108. 108-112. 2016.
 
[50]  Muhammad, B., Cummings, F. “Nitrogen plasma treatment of ZnO and TiO2 nanowire arrays for polymer photovoltaic applications,” Surfaces and Interfaces, 17. 100382. 2019.
 
[51]  Alabdali, Q., Bajawi, A., and Nahhas, A. M., “Review of Recent Advances of Shading Effect on PV Solar Cells Generation,” Sustainable Energy, 8. 1-5. 2020.
 
[52]  Long, H., Fang, G., Li, S., Mo, X., Wang, H., Huang, H., Jiang, Q., Wang, J., and Zhao, X., “A ZnO/ZnMgO multiple quantum well ultraviolet random laser diode,” IEEE Electron Device Letters, 32. 54-56. 2011.
 
[53]  Hwang, J., Wang, F., Kung, C., and Chan, M., “Using the surface plasmon resonance of Au nanoparticles to enhance ultraviolet response of ZnO nanorods based Schottky barrier photodetectors,” IEEE Transactions on Nanotechnology, 14. 318-321. 2015.
 
[54]  Sipr, O., Rocca, F., “Zn K edge and O K edge x-ray absorption spectra of ZnO surfaces: implications for nanorods,” Journal of Physics: Condensed Matter, 23. 315501. 2011.
 
[55]  Lestari, A., Iwan, S., Djuhana, D., Imawan, C., Harmoko, A., and Fauzia, V., “Effect of precursor concentration on the structural and optical properties of ZnO nanorods prepared by hydrothermal method,” AIP Conference Proceedings, 1729. 020027. 2016.
 
[56]  Montenegro, D., Souissi, A., Tomas, C., Sanjose, V., and Sallet, V., “Morphology transitions in ZnO nanorods grown by MOCVD,” Journal of Crystal Growth, 359. 122-128. 2012.
 
[57]  Mendelsberg, R., Kerler, M., Durbin, S., and Reeves, R., “Photoluminescence behavior of ZnO nanorods produced by eclipse PLD from a Zn metal target,” Superlattices and Microstructures, 43. 594-599. 2008.
 
[58]  Sang, N., Beng, T., Jie, T., Fitzgerald, E., and Jin, C., “Fabrication of p-type ZnO nanorods/n-GaN film heterojunction ultraviolet light emitting diodes by aqueous solution method,” Physica Status Solidi, A 210. 1618-1623. 2013.
 
[59]  Dalvand, R., Mahmud, S., Alimanesh, M., and Vakili, A. “Optical and structural properties of well-aligned ZnO nanoneedle arrays grown on porous silicon substrates by electric field-assisted aqueous solution method,” Ceramics International, 43. 1488-1494. 2017.
 
[60]  Chen, X., Shen, Y., Zhong, X., Li, T., Zhao, S., Zhou, P., Han, C., Wei, D., and Shen, Y. “Synthesis of ZnO nanowires/Au nanoparticles hybrid by a facile one pot method and their enhanced NO2 sensing properties,” Journal of Alloys and Compounds, 783. 503-512. 2019.
 
[61]  Cai, L., Li, H., Zhang, H., Fan, W., Wang, J., Wang, Y., Wang, X., Tang, Y., and Song, Y. “Enhanced performance of the tangerines-like CuO-based gas sensor using ZnO nanowire arrays,” Materials Science in Semiconductor Processing, 118. 105196. 2020.
 
[62]  Kim, J., Mirzaei, A., Kim, H., and Kim, S. “Pd functionalization on ZnO nanowires for enhanced sensitivity and selectivity to hydrogen gas,” Sensors & Actuators: B. Chemical, 297. 126693. 2019.
 
[63]  Zhou, Y., Wang, Y., Wang, Y., Xian Li, X., and Guo, Y. “The impact of carrier gas on room-temperature trace nitrogen dioxide sensing of ZnO nanowire-integrated film under UV illumination,” Ceramics International, 46. 16056-16061. 2020.
 
[64]  Liu, F., Chen, X., Wang, X., Han, Y., Song, X., He, X., Cui, H., and Tian, J. “Fabrication of 1D Zn2SnO4 nanowire and 2D ZnO nanosheet hybrid hierarchical structures for use in triethylamine gas sensors,” Sensors & Actuators: B. Chemical, 291. 155-163. 2019.
 
[65]  Arafat, M., Ong, J., and Haseeb, A. “Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors,” Applied Surface Science, 435. 928-936. 2018.
 
[66]  Hsueha, T., Peng, C., and Chen, W. “A transparent ZnO nanowire MEMS gas sensor prepared by an ITO microheater,” Sensors & Actuators: B. Chemical, 304. 127319. 2020.
 
[67]  Zhao, S. Shen, Y., Zhou, P., Hao, F., Xu., X. Gao, S., Wei, D., Ao, Y., and Shen, Y. “Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles,” Sensors & Actuators: B. Chemical, 308. 127729. 2020.
 
[68]  Wang, J., Shen, Y., Li, X., Xia, Y., and Yang, C. “Synergistic effects of UV activation and surface oxygen vacancies on the room-temperature NO2 gas sensing performance of ZnO nanowires,” Sensors & Actuators: B. Chemical, 298. 126858. 2019.
 
[69]  Hamid, H., Celik-Butler, Z. “Characterization and performance analysis of Li-doped ZnO nanowire as a nano-sensor and nano-energy harvesting element,” Nano Energy, 50. 159-168. 2018.