American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: https://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2023, 11(2), 61-69
DOI: 10.12691/ajfst-11-2-6
Open AccessArticle

Nutritional value and functional properties of leaves, petioles and roasted kernels of Tamarindus indica L. from Benin

Rose E. Kanfon1, 2, , Flora J. Chadare1, 3, C. Pascal Agbangnan D.4 and Paulin Azokpota3

1Laboratoire des Sciences et Technologies de l'Alimentation et des Bioressources et de la Nutrition Humaine (LaSTABNH), Centre Universitaire de Sakété, Université Nationale d'Agriculture, Bénin

2Laboratoire d'Etudes et de Recherche en Chimie Appliquée / Ecole Polytechnique d'Abomey Calavi / Université d'Abomey Calavi, 01BP : 2009 Cotonou, Bénin;Ecole des Sciences et Techniques de la Nutrition et de l'Alimentation, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi (ENSTA/FSA/UAC), Abomey-Calavi, Bénin

3Ecole des Sciences et Techniques de la Nutrition et de l'Alimentation, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi (ENSTA/FSA/UAC), Abomey-Calavi, Bénin

4Laboratoire d'Etudes et de Recherche en Chimie Appliquée / Ecole Polytechnique d'Abomey Calavi / Université d'Abomey Calavi, 01BP : 2009 Cotonou, Bénin

Pub. Date: August 10, 2023

Cite this paper:
Rose E. Kanfon, Flora J. Chadare, C. Pascal Agbangnan D. and Paulin Azokpota. Nutritional value and functional properties of leaves, petioles and roasted kernels of Tamarindus indica L. from Benin. American Journal of Food Science and Technology. 2023; 11(2):61-69. doi: 10.12691/ajfst-11-2-6

Abstract

Tamarindus indica L. is a non-timber forest product that offers an exceptional richness in macronutrients and micronutrients. The present work aims to evaluate the nutritional and functional value of dry depetiolated leaves, dry petioles and kernels of seeds roasted between 100°C and 110°C for 15 minutes of Tamarindus indica L. from Benin. The proximal composition of the samples was determined by standard methods and the mineral composition by atomic adsorption spectrometry. The results show that 100 g of leaves of Tamarindus indica L. contain on average ( 94.47 ± 0.31) g dry matter , (5.37 ± 0.09) g ash , (37.49 ± 0.11) g lipid, (14.92 ± 0. 10) g of protein and (50.12 ± 0.01) g of sugars. Roasted almonds showed the highest protein content (22.08 ± 0.10) g. The dry petioles were richer than the leaves and kernels in dry matter (95.33 ± 0.36) g. The most representative mineral of the leaves was phosphorus (701.5 ± 0.21) g and potassium for the almonds (1010.24 ± 2.45) mg per 100g of dry matter. The contents of magnesium, calcium, iron and copper were also high with average values ranging from (22.08 - 157.17) mg, (100.24 - 1346.71) mg, (16.77 - 62.71) mg and (5.43 - 11.54) mg respectively for roasted almonds and dry depetiolated leaves. Manganese was the least important mineral for almonds (5.43 mg) and leaves (7.09 mg) low, respectively below 1 and 0.5. These results show that the organs of Tamarindus indica L. prospected in this study present a rather interesting nutritional profile and reveal their functional character. They could play an important role in human nutrition and food security as food ingredients or incorporated into the formulations of products useful to humans.

Keywords:
Tamarindus indica L. Nutrients Seeds Roasted almonds Leaves

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Vitoekpon, I., Fandohan, AB, Ayimasse, AF, & Adekanmbi, DI (2021). Germination and growth performance of three provenances of tamarind (Tamarindus indica L.) in the Guinea-Congolese region. Moroccan Review of Agronomic and Veterinary Sciences, 9 (4), 770‑779.
 
[2]  Favet R., Frikart MJ & Potin J. (2011). Wealth and potential of agro-resources in developing countries: Valorization of tamarind. Montpellier SupAgro - Institute of Hot Regions, 28p.
 
[3]  Mehdi, MA, Alarabi, FY, Farooqui, M. & Pradhan, V. (2019). Phytochemical screening and antiamebic studies of Tamarindus indica of leaves extract. Asian Journal of Pharmaceutical and Clinical Research, 507-512.
 
[4]  Borquaye, LS, Doetse, MS, Baah, SO & Mensah, JA (2020). Anti-inflammatory and anti-oxidant activities of ethanolic extracts of Tamarindus indica L. (Fabaceae). Cogent Chemistry, 6 (1), 1743403.
 
[5]  Krishna, RN, Anitha, R. & Ezhilarasan, D. (2020). Aqueous extract of Tamarindus indica fruit pulp exhibits antihyperglycaemic activity. Avicenna Journal of Phytomedicine ; 10 (5): 440.
 
[6]  Havinga, RM, Hartl, A., Putscher, J., Prehsler, S., Buchmann, C. & Vogl, CR. (2010). T amarindus indica L. (Fabaceae: Patterns of use in traditional African medicine. Journal of Ethnopharmacology ;16.
 
[7]  Van der Stege Christine (2010). The ethnobotany of baobab (Adansonia digitata L.) and tamarind (Tamarindus indica L.) in West Africa: Their importance in rural subsistence and potential for participatory domestication to guarantee future access for the rural poor; Doctoral Thesis; University of Natural Resources and Life Sciences, Vienna, 369 p.
 
[8]  Official methods of analysis, Association of Official Analytical Chemists (AOAC), 15th Edition, Washington DC, Washington, (2000).
 
[9]  ISO 5983 (2005). Animal feeding stuffs - Determination of nitrogen content and calculation of crude protein content - Part 1 Kjeldahl method Switzerland: ISO.
 
[10]  Dubois M, Gilles DA, Hamilton JK, Rebers PA & Smith F. (1956) .Colorimetric methods for determination of sugar and related substances. Anal. Chem; 28 (3):350-356.
 
[11]  Kanninkpo, C. (2014). Apparatus and procedure for the determination of metals by Atomic Absorption Spectrophotometry. Laboratory of Soil, Water and Environmental Sciences (LSSEE/CRA Agonkanmey/INRAB); Synthesis of working documents, version updated in June 2014.
 
[12]  Akajiaku, LO, Nwosu, JN, Onuegbu, NC, Njoku, NE & Egbeneke, CO (2014). Proximate, mineral and anti-nutrient composition of processed (Soaked and Roasted) tamarind (Tamarindus indica) Seed nut. Curr. Res. Nutr. Food Science; 2: 136–145.
 
[13]  Bashir, AY, Abdullahi, SA, Suleiman B. (2016). Effect of roasting on the proximate, mineral and anti-nutrient composition of Tamarindus indica seed nuts. Fuw Trends in Science & Technology Journal; 1 (2): 493–496.
 
[14]  Gitanjali, Vishakha S. & Shashi J. (2020). Nutritional Properties of Tamarind (Tamarindus indica) Kernel Flour. Int.J.Curr.Microbiol.App.Sci; 9 (05): 1359-1364.
 
[15]  Mahajani, K. (2020). Physicochemical, functional properties and proximate composition of tamarind seed. Journal of AgriSearch; 7 (1): 51-53.
 
[16]  Kumar, CS & Bhattacharya S. (2008) Tamarind Seed: Properties, Processing and Utilization. Critical Reviews in Food Science and Nutrition; 48:1–20.
 
[17]  Nwosu, JN (2013). Production and Evaluation of Biscuits from Blends of Bambara Groundnut (Vigna Subterrane) and Wheat (Triticum eastrum) Flours. International Journal of Food and Nutrition Science; 2 (1): 4-9.
 
[18]  De Caluwé, E., Van Damme, P., Halamová, K. (2010). Tamarindus indica L.: A review of traditional uses, phytochemistry and pharmacology. AfricaFocus; 23 (1): 53-83.
 
[19]  Koudoro, YA, Agbangnan, DCP, Bogninou, GSR, Gbagan, S., Kanfon, R., Avlessi, F., Sohounhloue, CKD Phytochemical and nutritional analyzes of Solanum macrocarpon leaves harvested in Benin. International Journal of Green and Herbal Chemistry; 11(1): 046-054.
 
[20]  Asaolu, SS, Adefemi, OS, Oyakilome IG, Ajibulu, KE, Asaolu, MF (2012). Proximate and Mineral Composition of Nigerian Leafy Vegetables. J. Food Res; 1(3): 214
 
[21]  Food Agriculture Organization FAO. (2003). Tropical fruits – their nutritional values, their biodiversity and their contribution to health and nutrition (Third session) CCP:BA /TF 03/15, Puerto de la Cruz (Spain), 11-15 December.
 
[22]  Antia, BS, Akpan, EJ, Okon, PA & Umoren, IU (2006). Nutritive and anti-nutritive evaluation of sweet potatoes (Ipomoea batatas) leaves. Pakistan Journal of Nutrition.
 
[23]  Agbangnan, DCP, Bothon, FTD, Kanfon, RE, Medoatinsa, SE, Bahou, G., Wotto VD & Sohounhloue, DCK (2018). Nutritional Quality, Phenolic Compound Content and Radical Scavenging Potential of Artocarpus altilis of Benin. American Journal of Food Science and Technology; 6 (4):195-198.
 
[24]  Yusuf, AA, Mofio, BM, Ahmed, AB (2007). Proximate and mineral composition of Tamarindus indica Linn seeds. Science World Journal; 2 (1): 1-4.
 
[25]  Hemalatha, C. & Parameshwari S. 2021. The scope of tamarind (Tamarindus indica L.) kernel powder in diverse spheres: A review. Materials Today: Proceedings, 45: 8144–8148.
 
[26]  Tchiégang, C. & Kitikil A. (2004). Ethnonutritional data and physico-chemical characteristics of leafy vegetables consumed in the Adamaoua savannah (Cameroon). Tropicultura; 22 (1): 11-18
 
[27]  FAO/WHO. (1989). Codex Alimentarius Commission. Report of the sixteenth session of the codex committee of the nutrition and foods for special dietary uses Bonn-Bad Godesberg, Federal Republic of Germany, 29 september- 7 october.
 
[28]  Depezay L. (2007). Vegetables in the diet: their nutritional effects, Louis Bonduelle Foundation, 7p.
 
[29]  Pacaud, G., Cheneut, G., Charliat, D., Glachant E., Wattel, S., Thomas, D. (2002). Guide to vitamins and minerals for good health. Selection from Reader's Digest, Canada. 398p.
 
[30]  Ahodegnon, DK., Gnansounou, M., Bogninou, RG., Kanfon, ER., Chabi, B., Dossa, PCA., Anago, EA., Ahoussi, E., Wotto, V. & Sohounhloue, DC. (2018). Biochemical profile and antioxidant activity of Parkia biglobosa and Tamarindus indica fruits acclimated in Benin. International journal of advanced research; 6(11), 702‑711.
 
[31]  Paul, SH, Usman AA, Gana IN, Manase A., Adeniyi OD & Olutoye MA (2018). Comparative study of mineral and nutritional composition of a multifunctional flora composite formulated from seven medicinal plants and their applications to human health. Engineering Technology Journal, 1(5): 001-0014
 
[32]  Uzodinma, EO, Osagiede, EG, Chikwendu, JN (2020). Effect of different processing methods on chemical and pasting properties of tamarind (Tamarindus indica L.) seed flours. Journal of Tropical Agriculture, Food, Environment and Extension; 19 (1): 1 – 10.
 
[33]  FAO (2004). Handbook on Human Nutrition Requirements: FAO Food and Nutrition Vitamin and Mineral Requirements: Second edition. www.fao.orgAccessed on 07-12-2019.
 
[34]  Ajayi, IA, Oderinde, RA, Kajogbola, DO & Uponi JI (2006). Oil content and fatty acid composition of some underutilized vegetables from Nigeria. Food Chemistry, 99, 115-120
 
[35]  Nair, AG, Pradeesh S., Devi, CM, Mini, I., Swapna, TS (2013). Diplazium esculentus: A Wild Nutrient-Rich Leafy Vegetable form western Ghats. Prospects in Bioscience; 1:293–301.
 
[36]  Sadiq, IS, Duruminiya, NI, Balogun, JB, kwada, D., Izuagie, T., 2016. Nutritional and Anti-nutritional Value of Tamarind Fruit (Tamarindus indica). Int. J.Appl. Res. Technology. 5, 50–56.
 
[37]  Erickson, KM, Syversen, T., Aschner, JL, Aschner, M. (2005). Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. About Toxicol Pharmacol; 19:415–421.
 
[38]  Sidoryk-Wegrzynowicz, M. & Aschner, M. (2013). Manganese toxicity in the central nervous system: the glutamine/glutamate-γ-aminobutyric acid cycle. Journal of internal medicine; 273 (5): 466–477.
 
[39]  Baquer, NZ, Sinclair, M. & Kunjara, S. (2003). Regulation of glucose utilization and lipogenesis in adipose tissue of diabetic and fat fed animals: Effects of insulin and manganese. J. Biosci ; 28 (2): 215–221.
 
[40]  Alinor, IJ & Oze, R. (2011). Chemical evaluation of the nutritive value of Pentaclethra macrophyllabenth (African Oil Bean) seeds. Pakistan Journal of Nutrition; 10(4): 355 – 359.