American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: Editor-in-chief: Hyo Choi
Open Access
Journal Browser
American Journal of Food Science and Technology. 2022, 10(1), 10-19
DOI: 10.12691/ajfst-10-1-2
Open AccessArticle

Chemical and Antibacterial Properties of Lipids Extracted from Some Plant Seeds and Fruits Commonly Used in Cosmetics

Tseno Tchuenkam Joelle Ornella1, Tiepma Ngongang Flore1, Bernard Tiencheu1, , Noel Tenyang2, Arrey Oben Ebob Ashu1, Mbame Efeti Marie1 and Achidi Aduni Ufuan1

1Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon

2Department of Biological science, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon

Pub. Date: February 07, 2022

Cite this paper:
Tseno Tchuenkam Joelle Ornella, Tiepma Ngongang Flore, Bernard Tiencheu, Noel Tenyang, Arrey Oben Ebob Ashu, Mbame Efeti Marie and Achidi Aduni Ufuan. Chemical and Antibacterial Properties of Lipids Extracted from Some Plant Seeds and Fruits Commonly Used in Cosmetics. American Journal of Food Science and Technology. 2022; 10(1):10-19. doi: 10.12691/ajfst-10-1-2


Over the years, the cosmetic industry has offered a large variety of products that brought out the problems of stability, cost, and scouring couple with the growing effect of bacteria resistance. This research was carried out to determine the chemical and antibacterial properties of lipids extracted from plants commonly used in cosmetics. To achieve this, the physicochemical and phytochemical compositions as well as the antibacterial activity of six oil seeds and fruits: moringa (Moringa oleifeira), black seed (Nigella sativa), cocoa (Theobroma cacao), sesame (Sesamum indicum), coconut (Cocos nucifera) and avocado (Persea Americana) was analysed. The oils were extracted and lipid quality (acid value, saponification value, iodine value, peroxide value, p-anisidine value, and unsaponifiable matter) analysed as well as their phytochemical screening. Antibacterial activity was evaluated by disc diffusion and broth microdilution methods. Results revealed that iodine values of avocado, sesame, moringa, cocoa, coconut, and nigella were 72.89; 74.18; 73.45; 69.54; 70.35, and 61.11(gI2/100g) respectively. Peroxide values and %FFA ranged between [0.03 to 7.06 meqO2/Kg] and [8.42 to 20.70%] respectively. The unsaponifiable matter was 0.18; 0.64; 0.21; 0.25; 0.02 and 0.54% for avocado, sesame, moringa, cocoa, coconut and nigella respectively. These values indicate that these oils can be stable during storage. All the seeds and fruits oils extracted contained polyphenols, saponin, alkaloids, and terpenoids reported as classes of metabolites having antioxidant activities. Coconut, sesame, nigella, and moringa oils exhibited high antibacterial activity against selected microorganisms. These results suggest that studied oils may have cosmeceutical and technological applications in cosmetics.

Antibacterial activity Moringa oleifeira Nigella sativa Theobroma cacao Sesamum indicum Cocos nucifera Persea Americana Polyphenols Unsaponifiable Phytochemical

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Gubitosa, J. Rizzi, V. Fini, P. Cosma P., Hair Care Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo. A Review. Cosmetics. 2019; 6, 13.
[2]  Nora, A. and Csaba, F. Green Consumer Behavior in the Cosmetics Market, Resources, 2019; 8, 137.
[3]  Antonio, M., Rabasco, A., and María, G. R., Lipids in pharmaceutical and cosmetic preparations. Grasas y Aceites; 2000; 51, 74-96.
[4]  Timoszuk, M., Bielawska, K., Skrzydlewska, E., Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition. Antioxidants (Basel), 2018; 7(8), 108.
[5]  Bonnet, C., Lipids, a natural raw material at the heart of cosmetics innovation. Oilseeds Fats Crops Lipids, 2018; 25(5), D501.
[6]  Lautenschläger, H., Essential Fatty Acids – Cosmetic from Inside and Outside, 2003.
[7]  A. Obiedzińska, B. Waszkiewicz-Robak . Oleje tłoczone na zimno jako żywność ŻYWNOŚĆ. Nauka. Technologia. Jakość, 2012, 1 (80), 27-44.
[8]  Rios, J.L. and Recio, M.C. Medicinal Plants and Antimicrobial Activity. Journal of Ethnopharmacology, 2005; 100, 80-84.
[9]  Katušin-Ražem, B., Mihaljević, B., Ražem D., Microbial decontamination of Cosmetic Raw Materials and Personal Care Products by Irradiation. Radiation Physics and Chemistry. 2003; 66 (4), 309-316.
[10]  Lundov, M.D., Moesby, L., Zachariae, C., Johansen J.D., Contamination versus Preservation of Cosmetics: A Review on Legislation, Usage, Infections, and Contact Allergy, Contact Dermatitis. 2009; 60 (2), 70-78.
[11]  Nair M.K.N., Vasudevan, P., and Venkitanarayanan, K., Antibacterial Effect of Black Seed Oil on Listeria Monocytogenes. Food Control. 2005, 16 (5), 395-398.
[12]  Idu, M., Erhabor, J.O., Oghale, O.U., Obayagbona, N.O., Antimicrobial qualities, phytochemistry and micronutritional content of Khaya senegalensis (Desr.) A. Juss seed oil. The Journal of Phytopharmacology, 2014; 3(2): 95-101.
[13]  Kashmiri, M.A., Yasmin, S., Ahmad, M. Mohy-ud-Din, A. Characterization, Compositional Studies, Antioxidant and Antibacterial Activities of Seeds of Abutilon Indicum and Abutilon Muticum Grown Wild in Pakistan. Acta Chimica Slovenica. 2009; 56, 345-352.
[14]  Akbar, E., Yaakob, Z. Kamarudin, S. K. Ismail, M. and Salimon, J. Characteristic and composition of Jatropha Curcas oil seed from Malaysia and its potential as biodiesel feedstock. European Journal of Scientific Research, 2009; 29, 396-403.
[15]  AOAC. (2005). Horwitz (Ed.), Official Methods of Analysis of AOAC International (18th ed.) AOAC International. Gaithersburg MD, USA.
[16]  AFNOR (Association Française de Normalisation), recueil des norme française des corps gras, graine oléagineuses, produits dérivés 2,1981.
[17]  Banso, A., Adeyemo, S., Phytochemical screening and antimalarial assessment of Abutilon mauritianum, Bacopa monnifera and Datura stramonium. Biokemistri, 2006; 18, 39-44.
[18]  Joshi, A., Maya, B., and Ahma, S., Phytochemical investigation of roots of Grewia microscosLinn. Journal of chemical and pharmaceutical research. 2013; 5(7):80-87.
[19]  Gibbs R.D., 1974. Chemotaxonomy of Flowering Plants. Vol.1, McGill Queen’s University Press, Montreal and London.
[20]  Ayoola, G., Coker, H.A., Adesegun, S.A., Adepoju-Bello, A., Obaweya1 K., Ezennia, EC., Atangbayila T., Phytochemical Screening and Antioxidant Activities of Some Selected Medicinal Plants Used for Malaria Therapy in Southwestern Nigeria. Tropical Journal of Pharmaceutical Research. 2008; 1019-1024.
[21]  Gao X., Ohlander, M., Jeppsson, N., Björk, L., Trajkovski, V., Changes in antioxydant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation, Journal of Agriculture and Food Chemistry, 2000; 48, 1485-149.
[22]  Chidozie, V.N., Adoga, G.I., Chukwu, O.C., Chukwu, I.D., Adekeye, A.M., Antibacterial and toxicological effects of the aqueous extract of Mangifera Indica stem bark on albino rats. 2014; Global Journal of Biology, Agriculture & Health Sciences (G.J.B.A.H.S.), Vol.3(3): 237-245.
[23]  Mouokeu, R.S., Womeni, H.M., Njike, N.F., Kuiate, J.R., Chemical composition and antibacterial activity of oils from Chrysicthys nigrodigitatus and Hepsetus odoe, two freshwater fishes from Yabassi, Cameroon. Lipids in Health and Disease. 2018; 17: 45.
[24]  Ogbunugafor, H.A., Eneh, F.U., Ozumba, A.N., Igwo-Ezikpe, M.N., Okpuzor, J., Igwilo, I.O., Adenekan, S.O., and Onyekwelu, O.A., Physico-chemical and Antioxidant Properties of Moringa oleifera Seed Oil. Pakistan Journal of Nutrition. 2011; 10(5), 409-414.
[25]  Saeed, M.D. and Shola, E.A., Extraction and physicochemical properties of some edible seed oils sampled in Kano Metropolis, Kano State. Bayero Journal of Pure and Applied Sciences. 2015; 8(2), 239-244.
[26]  Warra, A., Cosmetic potentials of African Shea nut (vitellaria paradoxa) butter. Journal of Current Resources in Chemistry. 2011; 3: 80-86.
[27]  Codex Alimentarus. (1999). Codex Standard for Edible Fats and Oils Not Covered by Individual Standards., Rev. 2.Italy: Codex Alimentarius; 2009.
[28]  Oderinde, R.A., Ajayi, I.A., Adewuyi, A., Characterization of seed and seeds oil of Hura Crepitans and the kinetics of degradation of the oil during heating. Electron. Journal of Environment and Agriculture Food Chemistry, 2009 8(3): 201-208.
[29]  Abayeh, O.J., Aina, E.A., and Okuonghae, C.O., Oil content and oil quality characteristics of some Nigerian oil seeds. Journal of Pure Applicational Science, 1998; 1: 17-23.
[30]  Firestone D., Physical and Chemical Characteristics of Oils, Fats and Waxes. Champaign, IIl, USA: AOCS Press, 1997.
[31]  Izuagie, A., Akpambang, V.O.E., Amoo, A., Comparativecompositional analysis on two varieties of melon (Colocynthis citrullus and Cucumeropsis edulis) and a variety of almond (Prunus amydalus). Res. J. Agric. Biol. Sci., 2008; 4(6), 639-642.
[32]  A.O.A.C. (1990) Official Methods of Analysis. 15th Edition, Association of Official Analytical Chemist, Washington DC.
[33]  Zia-Ul-Haq, M., Ahmad, M., Iqbal, S., Ahmad, S., and Ali, H., Characterization and Compositional Studies of Oil from Seeds of Desi Chickpea (Cicer arietinum L.) Cultivars Grown in Pakistan. Journal of the American Oil Chemists’ Society, 2007; 84 (12), 1143-1148.
[34]  Ikram, B.A., Nizar, T., Enrique M., Ana, G. P., Rubio Maria C. P. C. Ali A. Sadok B. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chemistry, 2015; 173, 972-978.
[35]  Muanda, F. N., Identification de polyphénols, évaluation de leur activité antioxydante et étude de leurs propriétés biologiques. Thèse de Doctorat, Université Paul Verlaine-Metz. 2010; 55-86.
[36]  Voukeng. Activités antibactériennes de onze épices Camerounaises et leurs effets en association avec les antibiotiques sur les bactéries Gram negative multirésistantes in vitro. Thèse de Master II, Université de Dschang, 2011; 71 pp.
[37]  Fankam, G. R., Kuete, V., Voukeng, K.I., Kuiate, J. R., and Pages, J. M., Antibacterial of selected Cameroonian spices and their synergistic effets with antibiotic against Multidrug-resistant phenotypes. Complementary and Alternative Medicine. 2011; 11, 104.
[38]  NGuessan, H. A., Déliko, D.C.E., Békro, M. J. A., and Békro, Y.A., CCM Dextraits selectifs de 10 plantes utilisees dans le traitement traditionnel de l’hypertension arterielle en cote d’ivoire. European journal of Scientific Research, 2011 ; 4, 575-585.
[39]  Lacmata, S. T., Kuete, V., Dzoyem, J. P. Tankeo, S. B. Ngo, T. G., Kuiate, J. R., and Pages, Antibacterial activities of selected Cameroonian plants and their synergistic effects with antibiotics against bacteria expressing MDR phenotypes. Complementary and Alternative Medicine, 2012; 1-11.
[40]  Harbone, J. B., Phytochemical methods: A guide to modern techniques of plant analysis. Chapman and Hall Ltd., London. 1973; 116.
[41]  Kahouli I. Effet antioxydant d’extraits de plantes (Laurus nobilis L., Rosmarinus officinalis, Origanum majorana, Oléa europea L.) dans l’huile de canola chauffée.Thèse de Master, Université Laval Québec, 2010; 16-52.
[42]  Nurul, A., Rizki, M.A., Laras, C. and Rahmahdona, S., Physical and Chemical Characteristic of Virgin Coconut Oil under Mix Culture Fermentation Technique. Journal of Physics: Conference Series 1364. 2019, 012009, IOP Publishing.
[43]  Ajayi, A., Ude, A. N., and Balogun, Fulafia. O. J., Qualitative and Quantitative Phytochemical Analysis of Moringa Oleifera and Vernonia Amygdalina. Journal of Science and Technology, 2017; 3.
[44]  Marja, P.K., Anu, I.H., Heikki, J.V., Jussi-Pekka, R., Kalevi, P., Tytti, S.K., and Marina, H. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds Journal of Agricultural and Food Chemistry. 1999; 47 (10), 3954-3962.
[45]  Hassanein, M.M.M., El-Shami, S.M., El-Mallah, M.H., Investigation of, lipids profiles of Nigella, Lupin and artichoke seed oils to be used as healthy oils. J. Oleo. Sci., 2011; 60, 99-107.
[46]  Oyi, A.R., Onaolapo, J.A. and Obi, R.C. Formulation and Antimicrobial Studies of Coconut (Cocos nucifera Linne) Oil. Research Journal of Applied Sciences, Engineering and Technology, 2010; 2(2), 133-137.
[47]  DebMandal, M., and Mandal, S., Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pacific Journal of Tropical Medecine, 2011; 4, 241-247.
[48]  Abebe, E., Gugsa, G., Ahmed, M., Review on Major Food-Borne Zoonotic Bacterial Pathogens. J Trop Med., 2020; 4674235.
[49]  Bintsis, T., Foodborne pathogens. AIMS microbiology, 2017; 3(3), 529-563.
[50]  Huang, C.B., George, B., Ebersole, J.L., Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Archives of Oral Biology. 2010; 55(8): 555-60.
[51]  Silva L. Antimicrobial peptides from animals: focus on drug discovery. Letters in Drug Design and Discovery. 2011; 1(3): 230-6.
[52]  Orhan, I.E., Ozcelik, B., Sener, B., Evaluation of antibacterial, antifungal, antiviral, and antioxidant potentials of some edible oils and their fatty acid profiles. Turkish Journal of Biology, 2011; 35, 251-258.
[53]  Sugeng, H.S., Saraswati, Sri, H., Ayu, F.I., Fatty Acid Composition of Some Potential Fish Oil from Production Centers in Indonesia. Oriental Journal of Chemistry, 2014; 30 (3).
[54]  Ani, V., Varadaraj, M.C., and Naidu, K.A., Antioxidant and antibacterial activities of polyphenolic compounds bitter cumin. European Food Research and Technology, 2006; 97, 396-403.
[55]  Mohammed A. Study of antibacterial activity of Nigella sativa ethanol extract on the growth of Staphylococcus aurus in culture media. Kufa Journal for Veterinary Medical science, 2017; 8 (2).
[56]  Bakkali, F., Averbeck, S., Averbeck, D., and Idaomar, M., Biological effects of essential oils. Food and Chemical Toxicology, 2007; 46: 446-475.
[57]  Anand, D.T., Pothiraj, C., Gopinath, R.M., Effect of oil pulling on dental caries causing bacteria. African Journal of Microbiology research, 2008; 10, 160-163.