American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
American Journal of Food and Nutrition. 2014, 2(3), 43-48
DOI: 10.12691/ajfn-2-3-2
Open AccessArticle

Production of Citric Acid by Candida lipolytica under Fermentation Conditions Using a Plackett-Burman Design

Abonama O. M.1, Hoda Mahrous1, , El baz A. F.1 and Hamza H. A2

1Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City

2Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City

Pub. Date: June 30, 2014

Cite this paper:
Abonama O. M., Hoda Mahrous, El baz A. F. and Hamza H. A. Production of Citric Acid by Candida lipolytica under Fermentation Conditions Using a Plackett-Burman Design. American Journal of Food and Nutrition. 2014; 2(3):43-48. doi: 10.12691/ajfn-2-3-2


Citric acid is one of the most versatile industrial organic acids that are used in food industries, cosmetics and pharmaceuticals products. This work aimed to produce citric acid by Candida lipolytica under submerged fermentation conditions using a Plackett-Burman design. Twelve factors including pH, concentration of sodium acetate, magnesium sulfate, Ammonium chloride, potassium phosphate, ferric sulfate, manganese sulfate, zinc sulfate, yeast extract, glucose, aeration ratio and incubation time at a temperature of 30°C were tested as main variables affecting citric acid production using Plackett-Burman design. The results indicated that pH (7), concentration of sodium acetate (10g/L), magnesium sulfate (1.5g/L), potassium phosphate (5g/L), ammonium chloride (3g/L), ferric sulfate(140mg/L), manganese sulfate (50 mg/L), zinc sulfate (80 mg/L), yeast extract (5g/L), glucose (150g/L), aeration ratio(75ml medium/ flask250ml) and incubation period of 7 days were the most effective factors for the highest yield of citric acid production. The highest citric acid concentration was 22.8 g/L of the medium under the previously mentioned conditions.

Citric acid- Candida lipolytica-Plackett-Burman design

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  El-Baz, A. F. Yousria M. Shetaia, M. A. Al-Saman, M. M. Ammar and I. A. lbrahim. (2012). Biotransformation of The Glycyrrhizin Into18β-Glycyrrhetinic Acid By Trichosporon Jirovecii Using A Plackett-Burman Design. Minufiya J. Agric. Res. Vol. 37, NO. 4: 781-791.
[2]  Förster, A, Aurich, A., Mauersberger, S., Barth, G. (2007). Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. APPLIED MICROBIAL AND CELL PHYSIOLOGY75:1409-1417.
[3]  Haq, I. U., Khurshid, S., Ashraf, A. H., Qadeer, M. A., & Rajoka, M. L. (2002). Mutation of Aspergillus niger for hyperproduction of citric acid from black strap molasses. World Journal of Microbiology and Biotechnology, 17, 35-37.
[4]  Hooijkaas, L. P.; Wilkinson, E. C.; Tramper, J. And Buitelaar. (1998). Medium optimization for spore production of Conithyrium minitans using statistically based experimental designs. Biotechnol. Bioeng., 64:92-100.
[5]  Kapan, L. A.; Glucose and Kalpan, A. (1984). Clin. Chem. The C. V. Mosby Co. St Louis. Toronto. Princeton. 1032-1036.
[6]  Kapoor, K. K., Chaudhary, K., & Tauro, P. (1982). In: G. Reed (Ed.), Prescott and Dunn’s industrial microbiology. 4ed. Westport, Conn: AVI.
[7]  Kolicheski, M. B. (1995). Master of Science Thesis, Federal University of Paraná, Curitiba-PR, Brazil
[8]  Kubicek, C.P. and M. Rohr, (1986). Citric acid fermentation. Crit. Rev. Biotechnol., 3: 331-373.
[9]  Lodhi, A.K., M. Asghar, M.A. Zia, S. Ambreen and M.J. Asad, (2001). Production of citric acid from waste bread by Aspergillus niger. J. Biol. Sci., 1: 182-183.
[10]  Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenberghe, L. P. S., & Mohan, R. (2000).Bioresource Technology, 74, 81-87.
[11]  Pazouki, M., Felse, P. A., Sinha, J., & Panda, T. (2000). Bioprocess Engineering, 22, 353-361.
[12]  Plackett R L, Burman, J P (1946). The design of optimum multi-factorial experiments. Biometrika.; 33: 305-325.
[13]  Soccol, C. R. (1996). Journal of Scientific and Industrial Research, 55, 358-364.
[14]  Soccol, C. R., & Vandenberghe, L. P. S. (2003). Biochemical Engineering Journal, 13, 205-218.
[15]  Soccol, C. R., Vandenberghe, L. P. S., Rodrigues, C., & Pandey, A. F. (2006). Food Tech Biotechnol, 45, 141-150.
[16]  Vandenberghe, L. P. S., Soccol, C. R., Pandey, A., & Lebeault, J. M. (2000). Bioresource Technology, 74, 175-178.
[17]  Yadegary, M.; Hamidi, A.; Alavi, S. A.; Khodaverdi, E.; Yahaghi, H.; Sattari, S.; Bagherpour, G. and Yahaghi E. (2013), Citric Acid Production From Sugarcane Bagasse through Solid State Fermentation Method Using Aspergillus niger Mold and Optimization of Citric Acid Production by Taguchi Method. Jundishapur J Microbiol. 6(9): e7625.
[18]  Yokoya, F. (1992). Fermentação cítrica, Fundação Tropical de Pesquisas e Tecnologia “André Tosello.
[19]  Yu, X.; Hallett, S. G.; Sheppard, J. And Watson, A. K. (1997). Application of the Plackett-Burman experimental design to evaluate nutritional requirements for the production of Colleterichum coccodes spores. Appl. Microbial. Biotechnol., 47:301-305.
[20]  Plackett R L, Burman, J P (1946).