[1] | Hussain, I., & Sultan, S. (2010b). Analysis of procrastination among university students. Procedia - Social and Behavioral Sciences, 5, 1897–1904. |
|
[2] | Flett, G.L.; Hewitt, P.L.; Martin, T.R. Dimensions of perfectionism and procrastination. In Procrastination and Task Avoidance: Theory, Research, and Treatment; Ferrari, J.R., Johnson, J.L., McCown, W.G., Eds.; Plenum Press: New York, NY, USA, 1995; pp. 113–136. |
|
[3] | Cerino, E.S. Relationships between academic motivation, self-efficacy, and academic procrastination. Psi Chi J. Psychol. Res. 2014, 19, 156–163. |
|
[4] | Barrot, J. S., Llenares, I. I., & Del Rosario, L. S. (2021). Students’ online learning challenges during the pandemic and how they cope with them: The case of the Philippines. Education and Information Technologies, 26(6), 7321–7338. |
|
[5] | Elvers, G. C., Polzella, D. J., & Graetz, K. (2003). "Procrastination in online courses: Performance and attitudinal differences"." Teaching of Psychology". 30: 159-162. |
|
[6] | Klingsieck, K. B., Fries, S., Horz, C., & Hofer, M. (2012). "Procrastination in a distance university setting"." Distance Education". 33: 295-310. |
|
[7] | Rakes, G. C., & Dunn, K. E. (2010). "The Impact of Online Graduate Students' Motivation and Self-Regulation on Academic Procrastination"." Journal of interactive online learning". 9. |
|
[8] | Tuckman, B. W. (2011). The effect of motivational scaffolding on procrastinators' distance learning outcomes: A multiple case study. Journal of Marketing Education, 33(1), 5-17. |
|
[9] | Godinez, C. D. O., & Lomibao, L. S. (2022). A Gaussian-Bernoulli Mixed Naïve Bayes Approach to Predict Students’ Academic Procrastination Tendencies in Online Mathematics Learning. American Journal of Educational Research, 10(4), 223-232. |
|
[10] | Kaur, A., Singh, J. P., & Sharma, V. (2020). K-means clustering for student grouping in online learning environments. International Journal of Engineering & Technology, 7(4), 31-36. |
|
[11] | Chavez-Luque, A., Maldonado-Basurto, L. Á., & Mora-Olvera, A. T. (2023). Educational data analysis using K-means clustering and decision trees to predict academic performance. Applied Sciences, 13(12), 6053. |
|
[12] | Cano-Plata, M. I., Duque-Méndez, M. Á., & Martínez-Gómez, P. (2022). Student engagement in virtual courses: A study using k-means clustering and decision trees. Sustainability, 14(12), 7866. |
|
[13] | Dash, M., & Dash, P. K. (2012). Feature selection for classification: A data mining perspective. New York: Springer. |
|
[14] | James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning: with applications in R. Springer. |
|
[15] | Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3, 1157-1182. |
|
[16] | Robnik-Šikonja, M., & Kononenko, I. (2010). An empirical analysis of ReliefF and ReliefF for feature selection in regression. In Proceedings of the International Conference on Machine Learning (pp. 1227-1234). |
|
[17] | Yu, L., & Liu, H. (2004. Feature selection for data mining with evolutionary algorithms. Springer. |
|
[18] | S. Bagui, K. Devulapalli, and S. John, “MapReduce Implementation of a Multinomial and Mixed Naive Bayes Classifier,” Int. J. Intell. Inf. Technol., vol. 16, no. 2, pp. 123, 2020. |
|
[19] | S. Visa, B. Ramsay, A. Ralescu, and E. Van Der Knaap, “Confusion matrix-based feature selection,” CEUR Workshop Proc., vol. 710, pp. 120-127, 2011. |
|
[20] | Solomon, L. J., & Rothblum, E. D. (1984). Procrastination Assessment Scale--Students [Dataset]. In PsycTESTS Dataset. |
|
[21] | Brown, G., Humphreys, G., & ListNode, M. (2014). Feature selection for machine learning and data mining. John Wiley & Sons. |
|