International Journal of Celiac Disease
ISSN (Print): 2334-3427 ISSN (Online): 2334-3486 Website: https://www.sciepub.com/journal/ijcd Editor-in-chief: Samasca Gabriel
Open Access
Journal Browser
Go
International Journal of Celiac Disease. 2024, 12(1), 28-32
DOI: 10.12691/ijcd-12-1-6
Open AccessReview Article

Role of PARK7/DJ-1 in Gastrointestinal Diseases

Domonkos Pap1, 2, Apor Veres-Székely1, 2, Beáta Szebeni1, 2, Zrufkó Réka1, 2, Péter Bokrossy1, 2, Csenge Szász1, 2 and Ádám Vannay1, 2,

1Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary

2HUN-REN-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary

Pub. Date: December 22, 2024

Cite this paper:
Domonkos Pap, Apor Veres-Székely, Beáta Szebeni, Zrufkó Réka, Péter Bokrossy, Csenge Szász and Ádám Vannay. Role of PARK7/DJ-1 in Gastrointestinal Diseases. International Journal of Celiac Disease. 2024; 12(1):28-32. doi: 10.12691/ijcd-12-1-6

Abstract

Parkinson’s disease 7 (PARK7/DJ-1) is an evolutionarily conserved multifunctional protein whose role has been widely demonstrated in malignant tumours and neurodegenerative diseases, including Parkinson's or Alzheimer's disease. However, recent studies also revealed protective role of PARK7/DJ-1 regarding gastrointestinal diseases. In the present review, we discuss our current knowledge about PARK7/DJ-1 in the context of coeliac and inflammatory bowel disease.

Keywords:
PARK7/DJ-1 coeliac disease inflammatory bowel diseaseCrohn’s disease ulcerative colitis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Ito, G.; Ariga, H.; Nakagawa, Y.; Iwatsubo, T., Roles of distinct cysteine residues in S-nitrosylation and dimerization of DJ-1. Biochem Biophys Res Commun 2006, 339, (2), 667-72.
 
[2]  Wilson, M. A., The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid Redox Signal 2011, 15, (1), 111-22.
 
[3]  Pap, D.; Veres-Székely, A.; Szebeni, B.; Vannay, Á., PARK7/DJ-1 as a Therapeutic Target in Gut-Brain Axis Diseases. Int J Mol Sci 2022, 23, (12).
 
[4]  BioGRID https://thebiogrid.org/116446/summary/homo-sapiens/park7.html
 
[5]  Bonifati, V.; Rizzu, P.; van Baren, M. J.; Schaap, O.; Breedveld, G. J.; Krieger, E.; Dekker, M. C.; Squitieri, F.; Ibanez, P.; Joosse, M.; van Dongen, J. W.; Vanacore, N.; van Swieten, J. C.; Brice, A.; Meco, G.; van Duijn, C. M.; Oostra, B. A.; Heutink, P., Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003, 299, (5604), 256-9.
 
[6]  Kahle, P. J.; Waak, J.; Gasser, T., DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders. Free Radic Biol Med 2009, 47, (10), 1354-61.
 
[7]  Kiss, R.; Zhu, M.; Jójárt, B.; Czajlik, A.; Solti, K.; Fórizs, B.; Nagy, É.; Zsila, F.; Beke-Somfai, T.; Tóth, G., Structural features of human DJ-1 in distinct Cys106 oxidative states and their relevance to its loss of function in disease. Biochim Biophys Acta Gen Subj 2017, 1861, (11 Pt A), 2619-2629.
 
[8]  Qin, L. X.; Tan, J. Q.; Zhang, H. N.; Rizwana, K.; Lu, J. H.; Tang, J. G.; Jiang, B.; Shen, X. M.; Guo, J. F.; Tang, B. S.; Tan, L. M.; Wang, C. Y., BAG5 Interacts with DJ-1 and Inhibits the Neuroprotective Effects of DJ-1 to Combat Mitochondrial Oxidative Damage. Oxid Med Cell Longev 2017, 2017, 5094934.
 
[9]  Lippai, R.; Veres-Székely, A.; Sziksz, E.; Iwakura, Y.; Pap, D.; Rokonay, R.; Szebeni, B.; Lotz, G.; Béres, N. J.; Cseh, Á., Immunomodulatory role of Parkinson’s disease 7 in inflammatory bowel disease. Scientific reports 2021, 11, (1), 14582.
 
[10]  Guo, X.; Wang, H.; Yong, J.; Zhong, J.; Li, Q., MiR-128-3p overexpression sensitizes hepatocellular carcinoma cells to sorafenib induced apoptosis through regulating DJ-1. European Review for Medical & Pharmacological Sciences 2018, 22, (20).
 
[11]  Du, S.; Xu, L.; Gao, P.; Liu, Q.; Lu, F.; Mo, Z.; Fan, Z.; Cheng, X.; Dong, Z., MiR-203 regulates DJ-1 expression and affects proliferation, apoptosis and DDP resistance of pancreatic cancer cells. European Review for Medical & Pharmacological Sciences 2019, 23, (20).
 
[12]  Xiong, R.; Wang, Z.; Zhao, Z.; Li, H.; Chen, W.; Zhang, B.; Wang, L.; Wu, L.; Li, W.; Ding, J., MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiology of aging 2014, 35, (3), 705-714.
 
[13]  Choi, D. H.; Hwang, O.; Lee, K. H.; Lee, J.; Beal, M. F.; Kim, Y. S., DJ-1 cleavage by matrix metalloproteinase 3 mediates oxidative stress-induced dopaminergic cell death. Antioxid Redox Signal 2011, 14, (11), 2137-50.
 
[14]  Vasseur, S.; Afzal, S.; Tomasini, R.; Guillaumond, F.; Tardivel-Lacombe, J.; Mak, T.; Iovanna, J., Consequences of DJ-1 upregulation following p53 loss and cell transformation. Oncogene 2012, 31, (5), 664-670.
 
[15]  Chen, Y.; Gao, C.; Sun, Q.; Pan, H.; Huang, P.; Ding, J.; Chen, S., MicroRNA-4639 Is a Regulator of DJ-1 Expression and a Potential Early Diagnostic Marker for Parkinson's Disease. Front Aging Neurosci 2017, 9, 232.
 
[16]  Cholez, E.; Debuysscher, V.; Bourgeais, J.; Boudot, C.; Leprince, J.; Tron, F.; Brassart, B.; Regnier, A.; Bissac, E.; Pecnard, E., Evidence for a protective role of the STAT5 transcription factor against oxidative stress in human leukemic pre-B cells. Leukemia 2012, 26, (11), 2390-2397.
 
[17]  Tanti, G. K.; Pandey, S.; Goswami, S. K., SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt. Biochem Biophys Res Commun 2015, 463, (4), 524-31.
 
[18]  Andres-Mateos, E.; Perier, C.; Zhang, L.; Blanchard-Fillion, B.; Greco, T. M.; Thomas, B.; Ko, H. S.; Sasaki, M.; Ischiropoulos, H.; Przedborski, S.; Dawson, T. M.; Dawson, V. L., DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A 2007, 104, (37), 14807-12.
 
[19]  Zhang, L.; Shimoji, M.; Thomas, B.; Moore, D. J.; Yu, S. W.; Marupudi, N. I.; Torp, R.; Torgner, I. A.; Ottersen, O. P.; Dawson, T. M.; Dawson, V. L., Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005, 14, (14), 2063-73.
 
[20]  Junn, E.; Jang, W. H.; Zhao, X.; Jeong, B. S.; Mouradian, M. M., Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J Neurosci Res 2009, 87, (1), 123-9.
 
[21]  Ooe, H.; Taira, T.; Iguchi-Ariga, S. M.; Ariga, H., Induction of reactive oxygen species by bisphenol A and abrogation of bisphenol A-induced cell injury by DJ-1. Toxicol Sci 2005, 88, (1), 114-26.
 
[22]  Hayashi, T.; Ishimori, C.; Takahashi-Niki, K.; Taira, T.; Kim, Y. C.; Maita, H.; Maita, C.; Ariga, H.; Iguchi-Ariga, S. M., DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys Res Commun 2009, 390, (3), 667-72.
 
[23]  Ide, T.; Tsutsui, H.; Kinugawa, S.; Utsumi, H.; Kang, D.; Hattori, N.; Uchida, K.; Arimura, K.; Egashira, K.; Takeshita, A., Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 1999, 85, (4), 357-63.
 
[24]  Li, N.; Ragheb, K.; Lawler, G.; Sturgis, J.; Rajwa, B.; Melendez, J. A.; Robinson, J. P., Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 2003, 278, (10), 8516-25.
 
[25]  Clements, C. M.; McNally, R. S.; Conti, B. J.; Mak, T. W.; Ting, J. P., DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A 2006, 103, (41), 15091-6.
 
[26]  Im, J. Y.; Lee, K. W.; Woo, J. M.; Junn, E.; Mouradian, M. M., DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum Mol Genet 2012, 21, (13), 3013-24.
 
[27]  Richarme, G.; Marguet, E.; Forterre, P.; Ishino, S.; Ishino, Y., DJ-1 family Maillard deglycases prevent acrylamide formation. Biochem Biophys Res Commun 2016, 478, (3), 1111-6.
 
[28]  Batkulwar, K.; Godbole, R.; Banarjee, R.; Kassaar, O.; Williams, R. J.; Kulkarni, M. J., Advanced Glycation End Products Modulate Amyloidogenic APP Processing and Tau Phosphorylation: A Mechanistic Link between Glycation and the Development of Alzheimer's Disease. ACS Chem Neurosci 2018, 9, (5), 988-1000.
 
[29]  Prasad, A.; Bekker, P.; Tsimikas, S., Advanced glycation end products and diabetic cardiovascular disease. Cardiol Rev 2012, 20, (4), 177-83.
 
[30]  Ciccocioppo, R.; Vanoli, A.; Klersy, C.; Imbesi, V.; Boccaccio, V.; Manca, R.; Betti, E.; Cangemi, G. C.; Strada, E.; Besio, R.; Rossi, A.; Falcone, C.; Ardizzone, S.; Fociani, P.; Danelli, P.; Corazza, G. R., Role of the advanced glycation end products receptor in Crohn's disease inflammation. World J Gastroenterol 2013, 19, (45), 8269-81.
 
[31]  Tóbon-Velasco, J. C.; Cuevas, E.; Torres-Ramos, M. A., Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord Drug Targets 2014, 13, (9), 1615-26.
 
[32]  Lee, J. Y.; Song, J.; Kwon, K.; Jang, S.; Kim, C.; Baek, K.; Kim, J.; Park, C., Human DJ-1 and its homologs are novel glyoxalases. Hum Mol Genet 2012, 21, (14), 3215-25.
 
[33]  He, Y.; Zhou, C.; Huang, M.; Tang, C.; Liu, X.; Yue, Y.; Diao, Q.; Zheng, Z.; Liu, D., Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother 2020, 131, 110663.
 
[34]  Wang, Z.; Zhao, D.; Chen, L.; Li, J.; Yuan, G.; Yang, G.; Zhang, H.; Guo, X.; Zhang, J., Glycine increases glyoxalase-1 function by promoting nuclear factor erythroid 2-related factor 2 translocation into the nucleus of kidney cells of streptozotocin-induced diabetic rats. J Diabetes Investig 2019, 10, (5), 1189-1198.
 
[35]  Sharma, N.; Rao, S. P.; Kalivendi, S. V., The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease. Free Radic Biol Med 2019, 135, 28-37.
 
[36]  Jin, W., Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J Clin Med 2020, 9, (5).
 
[37]  He, X. Y.; Liu, B. Y.; Yao, W. Y.; Zhao, X. J.; Zheng, Z.; Li, J. F.; Yu, B. Q.; Yuan, Y. Z., Serum DJ-1 as a diagnostic marker and prognostic factor for pancreatic cancer. J Dig Dis 2011, 12, (2), 131-7.
 
[38]  Zhou, J.; Liu, H.; Zhang, L.; Liu, X.; Zhang, C.; Wang, Y.; He, Q.; Zhang, Y.; Li, Y.; Chen, Q.; Zhang, L.; Wang, K.; Bu, Y.; Lei, Y., DJ-1 promotes colorectal cancer progression through activating PLAGL2/Wnt/BMP4 axis. Cell Death Dis 2018, 9, (9), 865.
 
[39]  Mukherjee, D.; Chander, V.; Bandyopadhyay, A., PARIS-DJ-1 Interaction Regulates Mitochondrial Functions in Cardiomyocytes, Which Is Critically Important in Cardiac Hypertrophy. Mol Cell Biol 2020, 41, (1).
 
[40]  Amatullah, H.; Maron-Gutierrez, T.; Shan, Y.; Gupta, S.; Tsoporis, J. N.; Varkouhi, A. K.; Teixeira Monteiro, A. P.; He, X.; Yin, J.; Marshall, J. C.; Rocco, P. R. M.; Zhang, H.; Kuebler, W. M.; Dos Santos, C. C., Protective function of DJ-1/PARK7 in lipopolysaccharide and ventilator-induced acute lung injury. Redox Biol 2021, 38, 101796.
 
[41]  Dubois, P. C.; Trynka, G.; Franke, L.; Hunt, K. A.; Romanos, J.; Curtotti, A.; Zhernakova, A.; Heap, G. A.; Adány, R.; Aromaa, A.; Bardella, M. T.; van den Berg, L. H.; Bockett, N. A.; de la Concha, E. G.; Dema, B.; Fehrmann, R. S.; Fernández-Arquero, M.; Fiatal, S.; Grandone, E.; Green, P. M.; Groen, H. J.; Gwilliam, R.; Houwen, R. H.; Hunt, S. E.; Kaukinen, K.; Kelleher, D.; Korponay-Szabo, I.; Kurppa, K.; MacMathuna, P.; Mäki, M.; Mazzilli, M. C.; McCann, O. T.; Mearin, M. L.; Mein, C. A.; Mirza, M. M.; Mistry, V.; Mora, B.; Morley, K. I.; Mulder, C. J.; Murray, J. A.; Núñez, C.; Oosterom, E.; Ophoff, R. A.; Polanco, I.; Peltonen, L.; Platteel, M.; Rybak, A.; Salomaa, V.; Schweizer, J. J.; Sperandeo, M. P.; Tack, G. J.; Turner, G.; Veldink, J. H.; Verbeek, W. H.; Weersma, R. K.; Wolters, V. M.; Urcelay, E.; Cukrowska, B.; Greco, L.; Neuhausen, S. L.; McManus, R.; Barisani, D.; Deloukas, P.; Barrett, J. C.; Saavalainen, P.; Wijmenga, C.; van Heel, D. A., Multiple common variants for celiac disease influenci
 
[42]  Anderson, C. A.; Boucher, G.; Lees, C. W.; Franke, A.; D'Amato, M.; Taylor, K. D.; Lee, J. C.; Goyette, P.; Imielinski, M.; Latiano, A.; Lagacé, C.; Scott, R.; Amininejad, L.; Bumpstead, S.; Baidoo, L.; Baldassano, R. N.; Barclay, M.; Bayless, T. M.; Brand, S.; Büning, C.; Colombel, J. F.; Denson, L. A.; De Vos, M.; Dubinsky, M.; Edwards, C.; Ellinghaus, D.; Fehrmann, R. S.; Floyd, J. A.; Florin, T.; Franchimont, D.; Franke, L.; Georges, M.; Glas, J.; Glazer, N. L.; Guthery, S. L.; Haritunians, T.; Hayward, N. K.; Hugot, J. P.; Jobin, G.; Laukens, D.; Lawrance, I.; Lémann, M.; Levine, A.; Libioulle, C.; Louis, E.; McGovern, D. P.; Milla, M.; Montgomery, G. W.; Morley, K. I.; Mowat, C.; Ng, A.; Newman, W.; Ophoff, R. A.; Papi, L.; Palmieri, O.; Peyrin-Biroulet, L.; Panés, J.; Phillips, A.; Prescott, N. J.; Proctor, D. D.; Roberts, R.; Russell, R.; Rutgeerts, P.; Sanderson, J.; Sans, M.; Schumm, P.; Seibold, F.; Sharma, Y.; Simms, L. A.; Seielstad, M.; Steinhart, A. H.; Targan, S. R.; van den Berg, L. H.; Vatn,
 
[43]  Veres-Székely, A.; Bernáth, M.; Pap, D.; Rokonay, R.; Szebeni, B.; Takács, I. M.; Lippai, R.; Cseh, Á.; Szabó, A. J.; Vannay, Á., PARK7 Diminishes Oxidative Stress-Induced Mucosal Damage in Celiac Disease. Oxid Med Cell Longev 2020, 2020, 4787202.
 
[44]  Singh, Y.; Trautwein, C.; Dhariwal, A.; Salker, M. S.; Alauddin, M.; Zizmare, L.; Pelzl, L.; Feger, M.; Admard, J.; Casadei, N.; Föller, M.; Pachauri, V.; Park, D. S.; Mak, T. W.; Frick, J. S.; Wallwiener, D.; Brucker, S. Y.; Lang, F.; Riess, O., DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Sci Rep 2020, 10, (1), 16131.
 
[45]  Vörös, P.; Sziksz, E.; Himer, L.; Onody, A.; Pap, D.; Frivolt, K.; Szebeni, B.; Lippai, R.; Győrffy, H.; Fekete, A.; Brandt, F.; Molnár, K.; Veres, G.; Arató, A.; Tulassay, T.; Vannay, A., Expression of PARK7 is increased in celiac disease. Virchows Arch 2013, 463, (3), 401-8.
 
[46]  Shi, S. Y.; Lu, S. Y.; Sivasubramaniyam, T.; Revelo, X. S.; Cai, E. P.; Luk, C. T.; Schroer, S. A.; Patel, P.; Kim, R. H.; Bombardier, E.; Quadrilatero, J.; Tupling, A. R.; Mak, T. W.; Winer, D. A.; Woo, M., DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nat Commun 2015, 6, 7415.
 
[47]  Raninga, P. V.; Di Trapani, G.; Tonissen, K. F., The Multifaceted Roles of DJ-1 as an Antioxidant. Adv Exp Med Biol 2017, 1037, 67-87.
 
[48]  Di Narzo, A. F.; Brodmerkel, C.; Telesco, S. E.; Argmann, C.; Peters, L. A.; Li, K.; Kidd, B.; Dudley, J.; Cho, J.; Schadt, E. E.; Kasarskis, A.; Dobrin, R.; Hao, K., High-Throughput Identification of the Plasma Proteomic Signature of Inflammatory Bowel Disease. J Crohns Colitis 2019, 13, (4), 462-471.
 
[49]  Zhang, J.; Xu, M.; Zhou, W.; Li, D.; Zhang, H.; Chen, Y.; Ning, L.; Zhang, Y.; Li, S.; Yu, M.; Chen, Y.; Zeng, H.; Cen, L.; Zhou, T.; Zhou, X.; Lu, C.; Yu, C.; Li, Y.; Sun, J.; Kong, X.; Shen, Z., Deficiency in the anti-apoptotic protein DJ-1 promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via p53. J Biol Chem 2020, 295, (13), 4237-4251.
 
[50]  Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R., The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, (5).
 
[51]  Moschen, A. R.; Gerner, R. R.; Wang, J.; Klepsch, V.; Adolph, T. E.; Reider, S. J.; Hackl, H.; Pfister, A.; Schilling, J.; Moser, P. L.; Kempster, S. L.; Swidsinski, A.; Orth Höller, D.; Weiss, G.; Baines, J. F.; Kaser, A.; Tilg, H., Lipocalin 2 Protects from Inflammation and Tumorigenesis Associated with Gut Microbiota Alterations. Cell Host Microbe 2016, 19, (4), 455-69.