Journal of Environment Pollution and Human Health
ISSN (Print): 2334-3397 ISSN (Online): 2334-3494 Website: https://www.sciepub.com/journal/jephh Editor-in-chief: Dibyendu Banerjee
Open Access
Journal Browser
Go
Journal of Environment Pollution and Human Health. 2020, 8(1), 6-19
DOI: 10.12691/jephh-8-1-2
Open AccessArticle

Scarcity of Potable Water and Sanitation Facilities in the Endemic Cholera Region of North Cameroon

Wadoubé Zoua1, Moussa Djaouda2, , Justine Maïworé2, Song Liang3 and Moïse Nola4

1Department of Biological Sciences, Faculty of Science, University of Maroua, PO Box 46 Maroua, Cameroon

2Higher Teachers’ Training College, University of Maroua, PO Box 55 Maroua, Cameroon

3Department of Environmental and Global Health, College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, USA

4Laboratory of Hydrobiology and Environment, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, PO Box 812 Yaoundé, Cameroon

Pub. Date: December 25, 2019

Cite this paper:
Wadoubé Zoua, Moussa Djaouda, Justine Maïworé, Song Liang and Moïse Nola. Scarcity of Potable Water and Sanitation Facilities in the Endemic Cholera Region of North Cameroon. Journal of Environment Pollution and Human Health. 2020; 8(1):6-19. doi: 10.12691/jephh-8-1-2

Abstract

In North Cameroon, cholera outbreaks regularly occur during the rainy season. Nevertheless, how the outbreak takes place and how the disease is spread in the region remain largely unknown. This study aimed to characterize quality of water sources and explore potential environmental reservoirs of the causative agent, Vibrio cholerae, and factors maintaining its persistence. Of the 33 water sources investigated, 5 (4 wells and 1 stream point) were positive for V. cholerae. The water provided from wells and stream points is unsafe for consumption with regard to microbial indicators. High-risk zones of cholera were identified which could be used to inform local risk. The household size was shown to be a significant risk factor for reported cholera cases (P<0.05). Use of uncontrolled quality water (from well and stream) was also found as a risk factor for cholera (P<0.001). This study showed that individuals who do not wash their hands with soap are most vulnerable to cholera risk (P<0.001). The use of chlorine treated water, improvement in sanitation structures and hygiene are possible solutions to reduce cholera outbreaks.

Keywords:
Vibrio cholerae reservoirs sanitation hygiene north Cameroon

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 10

References:

[1]  Mengel, M. A.; Delrieu, I.; Heyerah, L.; Gessner, B. D. “Cholera outbreaks in Africa”, Current Topics in Microbiology, vol. 379, pp. 117-144, 2014.
 
[2]  UNICEF, “Choléra, épidémiologie et réponse factsheet Cameroun”, https://www.unicef.org/cholera/files/UNICEF-Cholera_Factsheet- Cameroun-VF.pdf, 2013, Accessed 21 April 2018.
 
[3]  Osei F.B. and Duker A.A. “Spatial dependency of V. cholerae prevalence on open space refuse dumps in Kumasi, Ghana: a spatial statistical modelling”, Int. J. Health Geogr., Vol. 7, pp. 1-17, 2008.
 
[4]  Bwire G., Ali M., Sack D.A., Nakinsige A., Naigaga M., Debes A.K., Ngwa M.C., Brooks W.A., Garimoi Orach C. “Identifying cholera “hotspots” in Uganda: an analysis of cholera surveillance data from 2011 to 2016”, PLoS Negl. Trop. Dis., vol. 11, e0006118, 2017.
 
[5]  Kaas R. S., Ngandjio A., Nzouankeu A., Siriphap A., Fonkoua M. C., Aarestrup F. M., Hendriksen R. S. “The Lake Chad basin, an isolated and persistent reservoir of Vibrio cholerae O1: a genomic insight into the outbreak in Cameroon, 2010”, PloS One, vol. 10, pp. 1-12, 2016.
 
[6]  Gwenzi W. and Sanganyado E. “Recurrent cholera outbreaks in Sub-Saharan Africa: moving beyond epidemiology to understand the environmental reservoirs and drivers”, Challenges, vol. 10, no. 1, 2019.
 
[7]  Almagro-moreno S. and Taylor R.K. “Cholera: environmental reservoirs and impact on disease transmission”, Microbiol. Spectr., vol. 1, 1-12, 2013.
 
[8]  Vezzulli L., Pruzzo C., Huq A., Colwell R.R. “Environmental reservoirs of Vibrio cholerae and their role in cholera”, Environ. Microbiol. Rep., vol. 2, pp. 27-33, 2010.
 
[9]  Akoachere J.F.T.K., Omam L.A. and Massalla T.N. “Assessment of the relationship between bacteriological quality of dug-wells, hygiene behaviour and well characteristics in two cholera endemic localities in Douala, Cameroon”, BMC Public Health, vol. 13, p. 692, 2013.
 
[10]  Matuamo Mahama A., Asomanin Anaman K. and Osei-Akoto I. “Factors influencing householders’ access to improved water in low-income urban areas of Accra, Ghana”, J. Water Health, vol. 12, no 2, 2014.
 
[11]  Obeng-Odoom F. “Beyond access to water”, Dev Pract., 22, 1135-1146, 2012.
 
[12]  Molua E. L. and Lambi C. M. “Climate Hydrology and Water Resources in Cameroon”, 2015.
 
[13]  Arabi M., Xiao N., Kolyang D. T., Liang S. “Cholera incidence in the far north region of Cameroon: a geographic perspective”, African Journal of Social Sciences, vol. 5, no. 3, pp. 141-156, 2014.
 
[14]  MacEachern A.S. “Processes of montagnard ethnogenesis in the northern Mandara mountains of Cameroon”, Mandaras Publishing, 433p, 2003.
 
[15]  A.P.H.A. “Standard Methods for the Examination of Water and Wastewater”, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, USA, 22nd edition, 2012.
 
[16]  Cheryl A. B, Allen A. R. and Joy G. W. “Isolation and identification of Vibrio cholerae serogroups O1 and O139”, In Laboratory methods for the diagnosis of epidemic dysentery and cholera, Center for Disease Control and Prevention, Atlanta, Georgia, pp 37-54, 1999.
 
[17]  Healy-Profitos J. M., Arabi M., Lee S., Garabed R., Moritz M., Piperata B., Tien J., Bisesi M. and Lee J. “Muddying the waters: a new area of concern for drinking water contamination in Cameroon”, Int. J. Environ. Res. Public Health, vol. 11, no. 12, pp 12454-12472, 2014.
 
[18]  Mpakam H. G., Kamgang Kabeyene B.V., Kouam Kenmogne G. R., Bemmo N., Ekodeck G.E. “L’accès à l’eau potable et à l’assainissement dans les villes des pays en développement (cas de Bafoussam au Cameroun)”, Vertigo, La Revue électronique en Sciences de l’Environnement, vol. 7, no. 2, 10p, 2006.
 
[19]  Yang K., LeJeune J., Alsdorf D., Lu B., Shum C. K. and Liang S. “Global Distribution of Outbreaks of Water-Associated Infectious Diseases”, PLoS Negl. Trop. Dis., vol. 6, no. 2, e1483, 2012.
 
[20]  Ako A. A., Shimada J., Takem Eyong G. E. and Fantong W. Y. “Access to potable water and sanitation in Cameroon within the context of Millennium Development Goals (MDGS)”, Water Sci. Technol., vol. 61.5., 2010.
 
[21]  Sorlini S., Palazzini D., Sieliechi J. and Ngassoum M. “Assessment of physical-chemical drinking water quality in the Logone Valley (Chad-Cameroon)”, Sustainability, vol. 5, no. 7, pp. 3060-3076, 2013.
 
[22]  Dempouo L. D., Bradford D. G., Ondobo G. A. and Etoundi G. A. M. “National surveillance data on the epidemiology of cholera in Cameroon”, J. Infect. Dis., vol. 208, pp. 92-97, 2013.
 
[23]  Swerdlow D. L., Malenga G., Begkoyian G., Nyangulu D., Toole M., Waldman R. J., Puhr D. N. and Tauxe R. V. “Epidemic cholera among refugees in Malawi, Africa: treatment and transmission”, Epidemiol. Infect., vol. 118, pp. 207-214, 1997.
 
[24]  Borroto R. J. and Martinez-Piedra R. “Geographical patterns of cholera in Mexico, 1991-1996”, Int. J. Epidemiol., vol. 29, no. 4, pp. 764-772, 2000.
 
[25]  Maran N. H., Crispim B. D. A., Iahnn S. R., Araujo R. P. D., Grisolia A. B. and Oliveira K.M. “Depth and Well Type Related to Groundwater Microbiological Contamination”, Int. J. Env. Res. Pub. He., vol. 13, no. 10, p. 1036, 2016.
 
[26]  Healy-Profitos J. M., Lee S., Arabi M., Garabed R., Moritz M., Piperata B. and Lee J. “Neighborhood diversity of potentially pathogenic bacteria in drinking water from the city of Maroua, Cameroon”, Journal of Water and Health, vol. 14.3, 2016.
 
[27]  Kabyla I. B., Ilunga K. S., Luvungu N., Basema M. F., Kavira L. G., Mulang Irung R., Mukonkole J., Kimba Mukanya P., Matungulu Matungulu C. and Mashini Ngongo G. “The recurrence of cholera in the city of Lubumbashi: investigation of risk factors for an effective response and health education perspective”, OALib. Journal, vol. 5, e4554, https://doi.org/10.4236/oalib.1104554, 2018.
 
[28]  Msyamboza K. P., Kagoli M., M’bang’ombe M., Chipeta S. and Masuku H. D. “Cholera outbreaks in Malawi in 1998-2012: social and cultural challenges in prevention and control”, J. Infect. Dev. Ctries., vol. 8, pp. 720-726, 2014.
 
[29]  Vanderslice J. and Briscoe J. “All coliforms are not created equal: a comparison of the effects of water source and in-house contamination on infantile diarrheal disease”, Water Resour. Res., vol. 29, p. 1983, 1993.
 
[30]  Lowman A., Mcdonald M. A., Wing S. and Muhammad N. “Land application of treated sewage sludge: community health and environmental justice”, Environ. Health Persp., vol. 121, pp. 537-542, 2013.
 
[31]  El-Bassiony G. M., Luizzi V., Nguyen D., Stoffolano J.G. and Purdy A. E. “Vibrio cholerae laboratory infection of the adult of house fly Musca domestica”, Med. Vet. Entomol., vol. 30, pp. 392-402,, 2016.
 
[32]  Fewtrell L., Kaufmann R.B., Kay D., Enanoria W., Haller L. and Colford J. M. “Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: A systematic review and meta-analysis”, Lancet Infect. Dis., vol. 5, pp. 42-52, 2005.
 
[33]  Kebiche M., Benabid C. and Adjal F. “Pollution des eaux superficielles dans un climat semi-aride: la région de Shétif (Algérie)”, Sécheresse, vol. 2, no. 10, pp. 137-142, 1999.
 
[34]  Chippaux J-P., Pernot C., Jouanneau D., Ciornei G., Moulin-Esnart P. and Couret D. “Évaluation de la potabilité de l’eau dans une zone peuplée du Sahel sénégalais: Niakhar”, Environ. Risque Santé, vol. 6, no. 5, pp. 373-381, 2007.
 
[35]  Belghiti M. L., Chahlaoui A., Bengoumi D. and El Moustaine R. “Etude de la qualité physico-chimique et bactériologique des eaux souterraines de la nappe plio-quaternaire dans la région de Meknes (Maroc)”, Larhyss Journal, vol. 14, pp. 21-36, 2013.
 
[36]  Njitchoua R., Dever L., Fontes J. C. and Naah E. “Geochemistry, origin and recharge mechanisms of groundwaters from the Garoua Sandstone aquifer, northern Cameroon”, J. Hydrol., vol. 190, pp. 123-140, 1997.
 
[37]  Surindra S., Jitender S., Mayuri C. and Arvind K.N. “Water quality assessment of river Hindon at Ghaziabad, India: impact of industrial and urban wastewater”, Environ. Monit. Assess, vol. 165, pp. 103-112, 2010.
 
[38]  R. Njitchoua. “Hydrochimie et géochimie isotopiques des eaux souterraines de la nappe des «Grès de Garoua», (Nord-Cameroun)”, Thèse nouveau Doctorat, Université de Paris, 11, Orsay, France, 1991.
 
[39]  W.H.O. “Total dissolved solids in drinking-water: background documents for development of WHO Guidelines for drinking-water quality”, 1996.
 
[40]  Srinivasamoorthy K., Chidambaram S., Sarma V.S., Vasanthavigar M., Vijayaraghavan K., Rajivgandhi R., Anandhan P. and Manivannan R. “Hydrogeochemical characterisation of Groundwater in Salem District of Tamilnadu, India”, Res. J. Environ. Earth Sci., vol. 1, no 2, pp. 22-33, 2009.
 
[41]  Monjerezi M. and Ngongondo C. “Quality of groundwater resources in Chikhwawa, Lower Shire Valley, Malawi”, Water Qual. Expo. Health, vol. 4, pp. 39-53, 2012.
 
[42]  W.H.O. “Guidelines for Drinking-Water Quality”, World Health Organization, Geneva, Switzerland, 3rd edition, 2004.
 
[43]  Djaouda M., Njine T., Liang S., Ebang Menye D., Gaké B., Zebaze Togouet S. H. and Nola M. “Bacteriological quality of well waters in Garoua”, Wat. Qual. Expo. Health., vol. 6, pp. 161-176, 2014.
 
[44]  Alam M., Sultana M., Nair G. B., Sack R. B., Sack D. A., Siddique A. K., Ali A., Huq A. and Colwell R.R. “Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh”, Appl. Environ. Microbiol., vol. 72, no 4, pp. 2849-2855, 2006.
 
[45]  Faruque S.M., Chowdhury N., Kamruzzaman M., Dziejman M., Rahman M. H., Sack D. A., Nair G.B. and Mekalanos J.J. “Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area”, Proc. Natl. Acad. Sci. U.S.A., vol. 101, no. 7, pp. 2123-2128, 2004.
 
[46]  Haley B. J., Chen A., Grim C. J., Clark P., Diaz C. M., Taviani E., Hasan N.A., Sancomb E., Elnemr W.M., Islam M.A., Huq A., Colwell R.R. and Benediktsdóttir E. “Vibrio cholerae in a historically cholera-free country”, Environ. Microbiol. Rep., vol. 4, no. 4, pp. 381-389, 2012.
 
[47]  Haley B. J., Grim C. J., Hasan N., Taviani E., Chun J., Brettin T. S., Bruce D. C., Challacombe J. F., Detter J. C., Han C. S., Huq A., Nair G. B. and Colwell R. “The pre-seventh pandemic Vibrio cholerae BX 330286 El Tor genome: evidence for the environment as a genome reservoir”, Environ Microbiol Rep., vol. 2, no. 1, pp. 208-216, 2010.
 
[48]  Choi S. Y., Rashed S. M., Hasan N. A., Alan M., Islam T., Sadique A., Johura F. T., Eppinger M., Ravel J., Huq A., Cravioto A. and Colwell R. R. “Phylogenetic Diversity of Vibrio cholerae associated with endemic cholera in Mexico from 1991 to 2008”, MBio, vol. 7, no. 2, e02160, 2016.
 
[49]  R. R. Colwell, “Viable but non culturable bacteria: a survival strategy”, J. Infect. Chemother., vol. 6 no. 2, pp. 121-125, 2000.