Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Journal of Applied & Environmental Microbiology. 2014, 2(4), 155-165
DOI: 10.12691/jaem-2-4-9
Open AccessArticle

Microbial Degradation of 3-Chloroanilne by two Bacterial Strains isolated from Common Effluent Treatment Plant

Maulin P Shah1,

1Industrial Waste Water Research Laboratory Division of Applied & Environmental Microbiology Enviro Technology Limited Plot No: 2413/14, GIDC Ankleshwar-393002 Gujarat, India

Pub. Date: June 15, 2014

Cite this paper:
Maulin P Shah. Microbial Degradation of 3-Chloroanilne by two Bacterial Strains isolated from Common Effluent Treatment Plant. Journal of Applied & Environmental Microbiology. 2014; 2(4):155-165. doi: 10.12691/jaem-2-4-9


The diversity has been examined of the plasmids and of the gene tdnQ, involved in oxidative deamination of aniline in three bacterial isolates that are able to metabolise both aniline and 3-chloroaniline (3-CA). Strains A and B were isolated in this study from a wastewater treatment plant and were identified as Comamonas testosterone and Delftia acidovorans, respectively. Strain C, identified as Delftia acidovorans, was isolated from a linuron-treated soil. Both Delftia and Comamonas belong to the family of the Comamonadaceae. All three strains possess a large plasmid of ca. 100 kb, but the plasmids from only 4 strains could be transferred to a recipient strain by selecting on aniline or 3-CA as sole source of carbon and/or nitrogen. Plasmid transfer experiments and Southern hybridization revealed that the plasmid of strain A encodes total aniline but not 3-CA degradation, while the plasmids of strains C and B were only responsible for the oxidative deamination of aniline. Using specific primers for the tdnQ gene, from Pseudomonas putida, the diversity of the PCR amplified fragments in the five strains was examined by denaturing gradient gel electrophoresis (DGGE). With DGGE, three different clusters of the tdnQ fragment could be distinguished. Sequencing data showed that the tdnQ sequences of A, C, B were very closely related, while the tdnQ fragment of BN3.1 and P. putida were only about 83% identical to the other sequences. Northern hybridization revealed that the tdnQ gene is only transcribed in the presence of aniline and not when only 3-CA is present.

DGGE P. putida deamination comamonadaceae

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Arai, H., S. Akahira, T. Ohishi, M. Maeda, and T. Kudo 1998. Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology. 10: 2895-2903.
[2]  Bae, H. S., J. M. Lee, Y. B. Kim, and S. T. Lee 1997. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301. Biodegradation. 7: 463-469.
[3]  Balashov, S. V., N. V. Balashova, and A. M. Boronin 1997. Plasmid control of ptoluenesulfonic acid degradation in Comamonas testosteroni BS1310. Microbiology. 66: 52-56.
[4]  Barriault, D., and M. Sylvestre 1993. Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms. Can. J. Microbiol. 39: 594-602.
[5]  Boon N, Goris J, De Vos P, Verstraete W & Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain I2gfp. Appl Environ Microbiol 66: 2906-2913.
[6]  Boon, N., J. Goris, P. De Vos, W. Verstraete, and E. M. Top 2000. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline degrading Comamonas testosteroni strain, I2gfp. Appl. Environ. Microbiol. 66: 2906-2913.
[7]  Bron, S., and G. Venema 1972. Ultraviolet inactivation and excision-repair in Bacillus subtilis. Construction of a transformable eight-fold auxotrophic strain and two ultra-violet sensitive derivates. Mut. Res. 15: 1-10.
[8]  Brunsbach, F. R., and W. Reineke 1993. Degradation of chloroanilines in soil slurry by specialized organisms. Appl. Microbiol. Biot. 40: 2-3.
[9]  Datta, N., R. W. Hedges, E. J. Shaw, R. B. Sykes, and M. H. Richmond 1971. Properties of an R Factor from Pseudomonas aeruginosa. J. Bacteriol. 108: 1244-1249.
[10]  De Vos, P., K. Kersters, E. Falsen, B. Pot, M. Gillis, P. Segers, and J. De Ley 1985. Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35: 443-453.
[11]  Di Gioia, D., M. Peel, F. Fava, and R. C. Wyndham 1998. Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl. Environ. Microbiol. 64: 1940-1946
[12]  Don, R. H., and J. M. Pemberton 1981. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol. 145: 681-696.
[13]  EEC (1976) Council Directive of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment or the community. In 76/464/EEC Directive
[14]  Ezaki, T., Y. Hashimoto, and E. Yabuuchi 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229.
[15]  Federal Register (1979) In Priority Pollutant List (promulgated by the US Environmental Protection Agency under authority of the Clean Water Act of 1977). Vol. 44, pp. 233.
[16]  Felske, A., A. Wolterink, R. van Lis, W. M. de Vos, and A. D. L. Akkermans 1999. Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol. Ecol. 30: 137-145.
[17]  Fujii, T., M. Takeo, and Y. Maeda 1997. Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology. 143: 93-99.
[18]  Fukumori, F., and C. P. Saint 1997. Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1). J. Bacteriol. 179: 399-408.
[19]  Fulthorpe, R. R., and R. C. Wyndham 1992. Involvement of a chlorobenzoatecatabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloraniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem. Appl. Environ. Microbiol. 58: 314-325.
[20]  Götz, A., R. Pukall, E. Smit, E. Tietze, R. Prager, H. Tschape, J. D. v. Elsas, and K. Smalla 1996. Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl. Environ. Microbiol. 62: 2621-2628.
[21]  Greenberg, A. E., L. S. Clesceri, and A. D. Eaton (eds.) 1992 Standard methods for the examination of water and wastewater, 18 ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington (D.C.).
[22]  Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 9: 29-71.
[23]  Helm V & Reber H (1979) Investigation of the regulation of aniline utilization in Pseudomonas multivorans strain An1. Eur J Appl Microbiol Biotechnol 7: 191-199.
[24]  Herrero, M., V. de Lorenzo, and K. N. Timmis 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172: 6557-6567.
[25]  Hickey, W. J., and D. D. Focht 1990. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl. Environ. Microbiol. 56: 3842-3850.
[26]  Hinteregger, C., M. Loidl, and F. Streichsbier 1992. Characterization of isofunctional ring-leaving enzymes in aniline and 3-chloroaniline degradation by Pseudomonas acidovorans CA28. FEMS Microbiol. Letters. 76: 261-266.
[27]  Kado, C. I., and S. T. Liu 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-1373.
[28]  Kearney PC & Kaufmann DD (1975) Herbicides: Chemistry, Degradation and Mode of Action, Marcel Dekker, New York.
[29]  Latorre J, Reineke W & Knackmuss HJ (1984) Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch Microbiol 140: 159-165.
[30]  Logan, N. A., L. Lebbe, B. Hoste, J. Goris, G. Forsyth, M. Heyndrickx, B. L. Murray, N. Syme, D. D. Wynn-Williams, and P. De Vos 2000. Aerobic endosporeforming bacteria from geothermal environments in northern Victoria land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int. J. Syst. Ev. Microbiol. 50: 1741-1753.
[31]  Loidl M, Hinteregger G, Ditzelmueller A, Fershl A & Streichsbier F (1990) Degradation of aniline and monochlorinated anilines by soil-borne Pseudomonas acidovorans strains. Arch Microbiol 155: 56-61.
[32]  Marcus, P., and P. Talalay 1956. Induction and purification of alpha-and betahydroxysteroid dehydrogenases. J. Biol. Chem. 218: 661-674.
[33]  McClure, N. C., A. J. Weightman, and J. C. Fry 1989. Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated-sludge unit. Appl. Environ. Microbiol. 55: 2627-2634.
[34]  Muyzer, G., E. C. de Waal, and A. Uitterlinden 1993. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
[35]  Nakatsu, C., J. Ng, R. Singh, N. Straus, and C. Wyndham 1991. Chlorobenzoate catabolic transposon Tn5271 is a composite class-I element with flanking class-II insertion sequences. Proc. Natl. Acad. Sci. U. S. A. 88: 8312-8316.
[36]  OECD (1997) OECD List of high production volume chemical. Organization for Economic Co-operation and Development. Environment directorate. Paris.
[37]  Official J L129. pp. 23.
[38]  Pearson, A. J., K. D. Bruce, A. M. Osborn, D. A. Ritchie, and P. Strike 1996. Distribution of class II transposase and resolvase genes in soil bacteria and their association with mer genes. Appl. Environ. Microbiol. 62: 2961-2965.
[39]  Peel, M. C., and R. C. Wyndham 1999. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill. Appl. Environ. Microbiol. 65: 1627-1635.
[40]  Pot, B., P. Vandamme, and K. Kersters 1994. Analysis of electrophoretic whole organism protein fingerprints, p. 493-521. In M. Goodfellow, and A. G. O'Donnel (eds), Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics, Wiley, Chichester.
[41]  Radianingtyas H, Robinson GK & Bull AT (2003) Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiology 149: 3279-3287.
[42]  Reber H, Helm V & Karanth NGK (1979) Comparative studies on the metabolism of aniline and chloroanilines by Pseudomonas mutivorans strain An1. Eur J Appl Microbiol Biotechnol 7:
[43]  Reber, H., V. Helm, and N. G. K. Karanth 1979. Comparative studies on the metabolism of aniline and chloroanilines by Pseudomonas multivorans strain An 1. Eur. J. Appl. Microbiol. 7: 181-189.
[44]  Reddy, K. J., R. Webb, and L. A. Sherman 1990. Bacterial RNA isolation with one hour centrifugation in a table-top ultracentrifuge. Biotechniques. 8: 250-251.
[45]  Schukat, B., D. Janke, D. Krebs, W. Fritsche, D. Springael, S. Kreps, and M. Mergeay 1983. Cometabolic degradation of 2-and 3-chloroaniline because of glucose metabolism by Rhodococcus sp. An117. Curr. Microbiol. 9: 81-86.
[46]  Stanier, R. Y., N. J. Palleroni, and M. Douderoff 1966. The aerobic Pseudomonads: a taxonomic study. J. Gen. Microbiol. 43: 159-271.
[47]  Surovtseva EG, Ivoilov VS, Karasevich YN & Vacileva GK (1985) Chlorinated anilines, a source of carbon, nitrogen and energy for Pseudomonas diminuta. Microbiologiya 54: 948-952.
[48]  Surovtseva, E. G., V. S. Ivoilov, G. K. Vasil'eva, and S. S. Belyaev 1996. Degradation of chlorinated anilines by certain representatives of the genera Aquaspirillum and Paracoccus. Mikrobiologiya. 65: 553-559.
[49]  Surovtseva, G., Vasileva G. K., Vol Nova A. I., and B. P. Baskunov 1980. Destruction of monochloroanilines by the meta-cleavage by Alcaligenes faecalis. Doklady Akademii Nauk SSSR. 254: 226.
[50]  Tamaoka, J., D.-M. Ha, and K. Komagata 1987. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosterone comb. nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37: 52-59.
[51]  Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocelulose. Proc. Natl. Acad. Sci. U.S.A. 77: 5201.
[52]  Tombolini, R., A. Unge, M. E. Davey, F. J. De Bruijn, and J. K. Jansson 1997. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol. 22: 17-28.
[53]  Top, E. M., W. E. Holben, and L. J. Forney 1995. Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl. Environ. Microbiol. 61: 1691-1698.
[54]  Top, E. M., Y. Moënne-Loccoz, T. Pembroke, and C. M. Thomas 2000. Phenotypic traits onferred by plasmids, p. 419. In C. M. Thomas (ed.), The horizontal gene pool. Overseas Publisher Association, Amsterdam, The Netherlands.
[55]  Top, E., M. Mergeay, D. Springael, and W. Verstraete 1990. Gene escape model transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appl. Environ. Microbiol. 56: 2471-2479.
[56]  Travkin VM, Solyanikova IP, Rietjens IM, Vervoort J, van Berkel WJ & Golovleva LA (2003) Degradation of 3,4-dichloro-and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health B 38: 121-132.
[57]  Versalovic, J., T. Koeuth, and J. Lupski 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 24: 6823-6831.
[58]  You IS & Bartha R (1982) Stimulation of 3,4-dichloroaniline mineralization by aniline. Appl Environ Microbiol 44: 678-681.
[59]  Zeyer J & Kearney PC (1982a) Microbial degradation of parachloroaniline as sole carbon and nitrogen source. Pest Biochem Physiol 17: 215-223.
[60]  Zeyer, J., A. Wasserfallen, and K. N. Timmis 1985. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl. Environ. Microbiol. 50: 447-453.
[61]  Zeyer, J., and P. C. Kearny 1982. Microbial degradation of para-chloroaniline as sole source of carbon and nitrogen. Pestic. Biochem. Phys. 17: 215-233.