Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: https://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2014, 2(4), 116-127
DOI: 10.12691/jaem-2-4-5
Open AccessArticle

Exploited Application of Denaturing Gradient Gel Electrophoresis in Analysis of Ammonia Oxidizing Bacterial Community Structure

Maulin P Shah1,

1Industrial Waste Water Research Laboratory Division of Applied & Environmental Microbiology Enviro Technology Limited Plot No: 2413/14, GIDC Ankleshwar-393002 Gujarat, India

Pub. Date: May 30, 2014

Cite this paper:
Maulin P Shah. Exploited Application of Denaturing Gradient Gel Electrophoresis in Analysis of Ammonia Oxidizing Bacterial Community Structure. Journal of Applied & Environmental Microbiology. 2014; 2(4):116-127. doi: 10.12691/jaem-2-4-5

Abstract

The aim of the present study was to investigate the diversity of the ammonia-oxidizing bacterial population by identifying autochthonous bacteria from allochthonous ammonia-oxidizing bacteria from the WWTP effluents. Measurements of potential nitrifying activity, competitive PCR, and denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA fragments specific to ammonia-oxidizing bacteria (AOB) were used to explore the succession and shifts of the ammonia-oxidizing community. The CTO primers used in this study were shown not to be completely specific to AOB of the ß subclass of Proteobacteria. We further demonstrated that when DGGE patterns are interpreted, all the different bands must be sequenced, as one major DGGE band proved to be affiliated with a group of non-AOB in the ß subclass of Proteobacteria. The majority of AOB (75 to 90%) present in the Amla Khadi river downstream of the effluent output belong to lineage 6a, represented by Nitrosomonas oligotropha- and Nitrosomonas ureae-like bacteria. This dominant lineage was represented by three bands on the DGGE gel. The major lineage-6a AOB species, introduced by the WWTP effluents, survived and might have grown in the receiving medium far downstream, in the estuary; it represented about 40% of the whole AOB population. The other two species belonging to lineage 6a seem to be autochthonous bacteria. One of them developed a few kilometers downstream of the WWTP effluent input in an ammonia-enriched environment, and the other appeared in the freshwater part of the estuary and was apparently more adapted to estuarine conditions. The rest of the AOB population was represented in equal proportions by Nitrosospira- and Nitrosococcus mobilis-like species.

Keywords:
DGGE ammonia nitrosospira nitrosoccous

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Brion, N., and G. Billen. 2000. Wastewater as a source of nitrifying bacteria in river systems: the case of the river Seine downstream from Paris. Water Res. 34: 3213-3221.
 
[2]  Fe´ray, C., and B. Montuelle. 2003. Chemical and microbial hypotheses explaining the effect of wastewater treatment plant discharges on the nitrifying communities in freshwater sediment. Chemosphere 50: 919-928.
 
[3]  Servais, P., J. Garnier, N. Demarteau, N. Brion, and G. Billen. 1999. Supply of organic matter and bacteria to aquatic ecosystems through waste water effluents. Water Res. 33: 3521-3531.
 
[4]  Prosser, J. I. 1989. Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30: 125-181.
 
[5]  Purkhold, U., A. Pommerening-Ro¨ser, S. Juretschko, M. C. Schmid, H.-P. Koops, and M. Wagner. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66: 5368-5382.
 
[6]  Teske, A., E. Alm, J. M. Regan, S. Toze, B. E. Rittmann, and D. A. Stahl. 1994. Evolutionary relationships among ammonia-and nitrite-oxidizing bacteria. J. Bacteriol. 176: 6623-6630.
 
[7]  Koops, H.-P., U. Purkhold, A. Pommerening-Ro¨ser, G. Timmermann, and M. Wagner. 2003. The lithoautotrophic ammonia-oxidizing bacteria. In M. Dworkin et al. (ed.), The Prokaryotes: an evolving electronic resource for the microbiological community, 3rd ed. Springer-Verlag, New York, N.Y.
 
[8]  DeBie, M. J. M., A. G. C. L. Speksnijder, G. A. Kowalchuk, T. Schuurman, G. Zwart, J. R. Stephen, O. E. Diekmann, and H. J. Laanbroek. 2001. Shifts in the dominant populations of ammonia-oxidizing beta-subclass Proteobacteria along the eutrophic Schelde estuary. Aquat. Microb. Ecol. 23: 225-236.
 
[9]  Koops, H.-P., and A. Pommerening-Ro¨ser. 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37: 1-9.
 
[10]  Kowalchuk, G. A., and J. R. Stephen. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55: 485-529.
 
[11]  Princic, A., I. Mahne, F. Megusar, E. A. Paul, and J. M. Tiedje. 1998. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Environ. Microbiol. 64: 3584-3590.
 
[12]  Suwa, Y., Y. Imamura, T. Suzuki, T. Tashiro, and Y. Urushigawa. 1994. Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Res. 28: 1523-1532.
 
[13]  Daims, H., J. L. Nielsen, P. H. Nielsen, K.-H. Schleifer, and M. Wagner. 2001. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67: 5273-5284.
 
[14]  Dionisi, H. M., A. C. Layton, G. Harms, I. R. Gregory, K. G. Robinson, and G. S. Sayler. 2002. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 68: 245-253.
 
[15]  Juretschko, S., G. Timmermann, M. Schmid, K.-H. Schleifer, A. Pommerening-Ro¨ser, H.-P. Koops, and M. Wagner. 1998. Combined molecular and conventional analysis of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051.
 
[16]  Kim, I. S., and V. N. Ivanov. 2000. Detection of nitrifying bacteria in activated sludge by fluorescent in situ hybridization and fluorescence spectrometry. World J. Microbiol. Biotechnol. 16: 425-430.
 
[17]  Rowan, A. K., J. R. Snape, D. Fearnside, M. R. Barer, T. P. Curtis, and I. M. Head. 2003. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 43: 195-206.
 
[18]  Silyn-Roberts, G., and G. Lewis. 2001. In situ analysis of Nitrosomonas spp. in wastewater treatment wetland biofilms. Water Res. 35: 2731-2739.
 
[19]  Bollmann, A., and H. J. Laanbroek. 2002. Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary. Aquat. Microb. Ecol. 28: 239-247.
 
[20]  Hastings, R. C., J. R. Saunders, G. H. Hall, R. W. Pickup, and A. J. Mc-Carthy. 1998. Application of molecular biological techniques to a seasonal study of ammonia oxidation in a eutrophic freshwater lake. Appl. Environ. Microbiol. 64: 3674-3682.
 
[21]  Hovanec, T. A., and E. F. DeLong. 1996. Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl. Environ. Microbiol. 62: 2888-2896.
 
[22]  Speksnijder, A. G. C. L., G. A. Kowalchuk, K. Roest, and H. Laanbroek. 1998. Recovery of a Nitrosomonas-like 16S rDNA sequence group from freshwater habitats. Syst. Appl. Microbiol. 21: 321-330.
 
[23]  Stehr, G., B. Bottcher, P. Dittberner, G. Rath, and H.-P. Koops. 1995. The ammonia-oxidizing nitrifying population of the river Elbe estuary. FEMS Microbiol. Ecol. 17: 177-186.
 
[24]  Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
 
[25]  Wagner, M., R. Amann, H. Lemmer, and K. Schleifer. 1993. Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520-1525.
 
[26]  Slawyck, G., and J. J. McIsaac. 1972. Comparison of two automated ammonium methods in a region of coastal upwelling. Deep Sea Res. 19: 1-4.
 
[27]  Rodier, J. 1984. L’analyse de l’eau (eaux naturelles, eaux re´siduaires, eau de mer), 7th ed., p. 177. Dunod Edition, Paris, France.
 
[28]  Ce´bron, A., T. Berthe, and J. Garnier. 2003. Nitrification and nitrifying bacteria in the lower Seine river and estuary (France). Appl. Environ. Microbiol. 69: 7091-7100.
 
[29]  Brion, N., and G. Billen. 1998. Une re´e´valuation de la me´thode d’incorporation de H14CO 3-pour mesurer la nitrification autotrophe et son application pour estimer des biomasses de bacte´ries nitrifiantes. Rev. Sci. Eau 11: 283-302.
 
[30]  Stephen, J. R., Y.-J. Chang, S. J. Macnaughton, G. A. Kowalchuk, K. T. Leung, C. A. Flemming, and D. C. White. 1999. Effect of toxic metals on indigenous soil beta-subgroup Proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl. Environ. Microbiol. 65: 95-101.
 
[31]  Rotthauwe, J.-H., K.-P. Witzel, and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale Analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712.
 
[32]  Kowalchuk, G. A., P. L. E. Bodelier, G. Hans, J. Heilig, J. R. Stephen, and H. J. Laanbroek. 1998. Community analysis of ammonia-oxidizing bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridization. FEMS Microbiol. Ecol. 27: 339-350.
 
[33]  Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
 
[34]  Felsenstein, J. 1993. PHYLIP: phylogeny inference package (version 3.5c). University of Washington, Seattle.
 
[35]  Se´bilo, M. 2003. Utilisation du trac¸age isotopique naturel pour caracte´riser et quantifier les processus de nitrification et de de´nitrification a` l’e´chelle du re´seau hydrographique de la Seine. Ph.D. thesis. Universite´ Pierre et Marie Curie, Paris, France.
 
[36]  Bollmann, A., and H. J. Laanbroek. 2001. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiol. Ecol. 1279: 1-11.
 
[37]  Guezenec, L., R. Lafite, J.-P. Dupont, R. Meyer, and D. Boust. 1999. Hydrodynamics of suspended particulate matter in the tidal freshwater zone of a macrotidal estuary (the Seine estuary, France). Estuaries 22: 717-727.
 
[38]  Nicolaisen, M. H., and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203.
 
[39]  Freitag, T. E., and J. I. Prosser. 2003. Community structure of ammoniaoxidizing bacteria within anoxic marine sediments. Appl. Environ. Microbiol. 69: 1359-1371.
 
[40]  Kowalchuk, G. A., J. R. Stephen, W. D. Boer, J. I. Prosser, T. M. Embley, and\ J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the beta-subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63: 1489-1497.
 
[41]  Boon, N., E. M. Top, W. Verstraete, and S. D. Siciliano. 2003. Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl. Environ. Microbiol. 69: 1511-1520.
 
[42]  Cilia, V., B. Lafay, and R. Christen. 1996. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol. Biol. Evol. 13: 451-461.
 
[43]  Suzuki, M., and S. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630.
 
[44]  Eichner, C. A., R. W. Erb, K. N. Timmis, and I. Wagner-Dobler. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollut-ant shocks in the activated sludge microbial community. Appl. Environ. Microbiol. 65: 102-109.
 
[45]  Torsvik, V., and L. Ovreas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5: 240-245.
 
[46]  Avrahami, S., W. Liesack, and R. Conrad. 2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5: 691-705.
 
[47]  Garnier, J., P. Servais, and G. Billen. 1991. Bacterioplankton in the Seine River (France): impact of the Parisian urban effluent. Can. J. Microbiol. 38: 56-64.
 
[48]  Bodelier, P. L. E., J. A. Libochant, C. W. P. M. Blom, and H. J. Laanbroek. 1996. Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Appl. Environ. Microbiol. 62: 4100-4107.
 
[49]  Clark, C., and E. L. Schmidt. 1967. Uptake and utilization of amino acids by resting cells of Nitrosomonas europaea. J. Bacteriol. 93: 1309-1315.
 
[50]  Garnier, J., P. Servais, G. Billen, M. Akopian, and N. Brion. 2001. Lower Seine river and estuary (France) carbon and oxygen budgets during low flow. Estuaries 24: 964-976.
 
[51]  Servais, P., and J. Garnier. 1993. Contribution of heterotrophic bacterial production to the carbon budget of the River Seine (France). Microb. Ecol. 25: 19-33.
 
[52]  Phillips, C. J., Z. Smith, T. M. Embley, and J. I. Prosser. 1999. Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the βsubdivision of the class Proteobacteria in the northwestern Mediterranean Sea. Appl. Environ. Microbiol. 65: 779-786.
 
[53]  McCaig, A. E., C. J. Phillips, J. R. Stephen, G. A. Kowalchuk, S. M. Harvey, R. A. Herbert, T. M. Embley, and J. I. Prosser. 1999. Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl. Environ. Microbiol. 65: 213-220.
 
[54]  Kowalchuk, G. A., A. W. Stienstra, G. H. J. Heilig, J. R. Stephen, and J. W. Woldendorp. 2000. Molecular analysis of ammonia-oxidizing bacteria in soil of successional grasslands of the Drentsche A (The Netherlands). FEMS Microbiol. Ecol. 31: 207-215.
 
[55]  Stephen, J. R., G. A. Kowalchuk, M.-A. V. Bruns, A. E. McCaig, C. J. Phillips, T. M. Embley, and J. I. Prosser. 1998. Analysis of _-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl. Environ. Microbiol. 64: 2958-2965.
 
[56]  Bollmann, A., M.-J. Ba¨r-Gilissen, and H. Laanbroek. 2002. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68: 4751-4757.
 
[57]  Oved, T., A. Shaviv, T. Goldrath, R. T. Mandelbaum, and D. Minz. 2001. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 67: 3426-3433.
 
[58]  Hastings, R. C., C. Butler, I. Singleton, J. R. Saunders, and A. J. McCarthy. 2000. Analysis of ammonia-oxidizing bacteria populations in acid forest soil during conditions of moisture limitation. Lett. Appl. Microbiol. 30: 14-18.
 
[59]  Bruns, M. A., J. R. Stephen, G. A. Kowalchuk, J. I. Prosser, and E. A. Paul. 1999. Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Appl. Environ. Microbiol. 65: 2994-3000.
 
[60]  Smorczewski, W. T., and E. L. Schmidt. 1991. Numbers, activities and diversity of autotrophic ammonia-oxidizing bacteria in freshwater, eutrophic lake sediment. Can. J. Microbiol. 37: 828-833.
 
[61]  Muyzer, G., S. Hottentra¨ger, A. Teske, and C. Wawer. 1996. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA: a new molecular approach to analyse the genetic diversity of mixed microbial communities, p. 4.4.1-4.4.23. In A. D. L. Akkermans, J. D. Van Elsas, and F. J. De Bruijn (ed.), Molecular microbial ecology manual, vol. 3. Kluwer Academic Publishers, Dordrecht, The Netherlands.
 
[62]  Sinigalliano, C. D., D. N. Kuhn, and R. D. Jones. 1995. Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl. Environ. Microbiol. 61: 2702-2706.
 
[63]  Aakra, A., J. B. Utaker, and I. F. Nes. 2001. Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammoniaoxidizing bacteria. FEMS Microbiol. Lett. 205: 237-242.
 
[64]  Kowalchuk, G. A., Z. S. Naoumenko, P. J. L. Derikx, A. Felske, J. R. Stephen, and I. A. Arkhipchenko. 1999. Molecular analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in compost and composted materials. Appl. Environ. Microbiol. 65: 396-403.
 
[65]  Wagner, M., G. Rath, R. Amann, H.-P. Koops, and K.-H. Schleifer. 1995. In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251-264.