Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: https://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2022, 10(1), 1-8
DOI: 10.12691/jaem-10-1-1
Open AccessArticle

Antibiotic Resistance and Antibacterial Activity in Four Strains Isolated from Soils in Brazzaville Republic of Congo

Thantique Moutali Lingouangou1, 2, Etienne Nguimbi1, 3, , Nicaise Saturnin Mokemiabeka1, Isaac Samuel Onyankouang1, 2, Ngo-Itsouhou 1, 2 and Faly Armel Soloka Mabika1, 2

1Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences ET Techniques, Université Marien Ngouabi, République du Congo

2Unité de Microbiologie Moléculaire et Bioinformatique, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo

3Unité de Microbiologie Moléculaire et Bioinformatique, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo;Institut de Recherches en Sciences Exactes ET Naturelles (IRSEN), Avenue de l’Auberge Gascogne Cité scientifique (Ex. OROSTOM), Brazzaville, Republic of the Congo

Pub. Date: December 07, 2021

Cite this paper:
Thantique Moutali Lingouangou, Etienne Nguimbi, Nicaise Saturnin Mokemiabeka, Isaac Samuel Onyankouang, Ngo-Itsouhou and Faly Armel Soloka Mabika. Antibiotic Resistance and Antibacterial Activity in Four Strains Isolated from Soils in Brazzaville Republic of Congo. Journal of Applied & Environmental Microbiology. 2022; 10(1):1-8. doi: 10.12691/jaem-10-1-1

Abstract

The antibiotic resistance and antibacterial activity of four strains isolated from soils in Brazzaville were evaluated. These four strains registered in GenBank have successively the following accession numbers: Pantoea dispersa MLTBY6 (MT646430.1); Pseudomonas aeruginosa MLTBM2 (MT646431.1); Bacillus subtilis MLTBC5 (MT674681.1) and Pseudomonas monteilii MLTBC10 (MT674682.1). Our strains exhibited resistance according to the following profile: all four strains exhibited resistance to Fosfomicyne, two strains including Pseudomonas aeruginosa and Pseudomonas monteilii exhibited resistance to Ceftazidime, Ticarcillin + Clavulanic acid and Rifampicin while one strain in particular Pantoea dispersa to exhibit resistance to Amoxicillin + Clavulanic acid and to Ceftriaxone. All strains (Bacillus subtilis, Pseudomonas aeruginosa, Pseudomonas monteilii and Pantoea dispersa) exhibited antibacterial activity against Salmonella, three strains including Bacillus subtilis, Pseudomonas aeruginosa and Pantoea dispersa exhibited antibacterial activity against -vis of Escherichia coli, three strains (Bacillus subtilis, Pseudomonas monteilii and Pantoea dispersa) exhibited antibacterial activity against Staphylococcus aureus and two strains (Bacillus subtilis and Pantoea dispersa) exhibited antibacterial activity against -to Pseudomonas aeruginosa.

Keywords:
antibiotic antibacterial strains soils resistance

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Skiada, A., Markogiannakis, A., Plachouras, D., & Daikos, G.L. (2011). Adaptive resistance to cationic compounds in Pseudomonas aeruginosa. Int J Antimicrob Agents 37: 187-193.
 
[2]  Davies, J., & Davies, D. (2010). Origins and évolution of antibiotic resistance. Microbiol Mol Biol Rev 74: 417-433.
 
[3]  Poole, K. (2003 a). Efflux-mediated multi résistance in gram-négative bacteria. Clin Microbiol Infect 10: 12-26.
 
[4]  Kohanski, M.A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797-810.
 
[5]  G. PRATS., B. MIRELIS., T. LLOVET., C. MUNOZ., E. MIRO., and F. NAVARRO, “Antibiotic resistance trends in enteropathogenic bacteria isolated in 1985-1987 and 1995-1998 in Barcelona”, Antimicrob Agents Chemother, 44 (2000) 1140-1145.
 
[6]  Institution des normes pour laboratoires et cliniques. (2010).
 
[7]  Comité de l’Antibiogramme de la Société française de Microbiologie (CA-SFM). Recommandations. (2020).
 
[8]  BAUER, A.W., KIRBY, W.M.M., SHERRIS, T.C., and TRUCK, M. (1966), Antibiotic susceptibility testing by a standardized single disc method, American Journal of Clinical Pathology, 45, p. 493-496.
 
[9]  BARRY, A.L., and THORNSBERRY, C. (1985), Susceptibility test, diffusion test procedure, American Journal of Clinical Pathology, 19, p. 492-500.
 
[10]  Tadesse, G., Ephraim, E., and Ashenafi, M. 2004. Assessment of the antimicrobial activity of lactic acid bacteria isolated from Borde and Shamita, traditional Ethiopian fermented beverages, on some foodborne pathogens and effect of growth medium on the inhibitory activity. Int. J. Food Safety, 5: 13-20.
 
[11]  Ayoade. Abdulfatai. Adesokan., Musbau. Adewumi, Akanji., and Musa. Toyin. Yakubu. (2007). Antibacterial potentials of aqueous extract of Enantia chlorantha stem bark. 2503-2505.
 
[12]  Doughari, J. H., Elmahmood, A. M., and Manzara, S. (2007). Studies on the antibacterial activity of root extracts of Carica papaya L. 38-41.
 
[13]  Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature 406: 775-781.
 
[14]  Jacoby, G.A., and Archer, G.L. (1991). New mechanisms of bacterial resistance to antimicrobial agents. N Engl J Med 324: 601-612.
 
[15]  Alexis. Délétoile., Dominique, Decré., Stéphanie. Courant., Virginie, Passet., Jennifer. Audo., Patrick. Grimont., Guillaume, Arlet., and Sylvain. Brisse. 2009. Phylogeny and Identification of Pantoea Species and Typing of Pantoea agglomerans Strains by Multilocus Gene Sequencing. 306-310.
 
[16]  Ahombo, Gabriel., Baloki, Ngoulou, Tarcisse., Moyen, Rachel., Kayath, Aimé. Christian., Ontsira, Ngoyi, Nina. Esther. 2019. Study of Colistin Resistance Encoded by the mcr-1 Gene in Community and Clinical Pseudomonas in Brazzaville, Republic of Congo. ournal of Microbial & Biochemical Technology 11(3): 96-101.
 
[17]  Makaya, PN. ND., Guessennd, N. K., Kayath, C. A., Gba, K. K., GbononV, Nguetta. SP., et al. Emergence of Antibiotic Resistance and Correlation with the Efflux Pump in Pseudomonas aeruginosa isolated from Abidjan Hospital. Int J Sci Res. 2015; 6(3): 2319-7064.
 
[18]  Hortense. Gonsu, Kamga., Michel. Toukam., Zacharie. Sando., Jean. Marie. Ndifo Ngamba., Calixte. Didier. Mbakop., and Dieudonné. Adiogo. (2015). Caractérisation phénotypique des souches de Pseudomonas aeruginosa isolées dans la ville de Yaoundé (Cameroun). 3-4.
 
[19]  Armstrong, R. N. (2000) Mechanistic diversity in a metalloenzyme superfamily. Biochemistry. 39: 13625-13632.
 
[20]  Bernat, B.A., Laughlin, L.T., and Armstrong, R. N. (1999). Elucidation of a monovalent cation dependence and characterization of the divalent cation binding site of the Fosfomicyne resistance protein (FosA). Biochemistry 38: 7462-7469.
 
[21]  Pakhomova, S., Rife, C.L., Armstrong, R.N., and Newcomer, M.E. (2004) Structure of Fosfomicyne resistance protein FosA from transposon Tn2921. Protein Sci 13: 1260-1265.
 
[22]  Cao, M., Bernat, B.A., Wang, Z., Armstrong, R.N., and Helmann, J.D. (2001). FosB, a cysteine-dependent Fosfomicyne resistance protein Under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J Bacteriol. 183: 2380-2383.
 
[23]  Muhammad. Awais., A. Amer. Ali. Shah., Abdul. Hameed., and Fariha. Hasan. (2007). Isolation, identification and optimization of bacitracin produced by bacillus sp. 1306-1312.
 
[24]  Alain. Brice. Mbozo, Vouidibio., Christian. Aimé. Kayath., Etienne. Nguimbi., Augustin. Aimé. Lebonguy., and Simon. Charles. Kobawila. (2017). Potential Sport- Forming Probiotics Isolated From Ntoba Mbodi ar Brazzaville, Republic of Congo. International journal of science and Research (IJSR) Volume 7 Issue 11. P241-248.
 
[25]  Ouoba, L. I. I., Parkouda, C., Diawara, B., Scotti, C. and Varnam, A. H. 2008a. Identification of Bacillus spp from Bikalga, fermented seeds of Hibiscus sabdariffa: phenotypic and genotypic characterization. J Appl Microbiol, 104: 122-131.
 
[26]  Guo, X., Li, D., Lu, W., Piao, X, and Chen, X. 2006. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie van Leeuwenhoek, 90: 139-146.
 
[27]  Ngo-Itsouhou, Etienne Nguimbi, Rachel Moyen, and Armel Faly Soloka Mabika, “Harnessing Biological Activities in Soil-Bacillus Strains to Promote the Discovery of New Bioactive Compounds.” Journal of Applied & Environmental Microbiology, vol. 8, no. 5 (2020): 32-38.