International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2023, 11(4), 174-179
DOI: 10.12691/ijp-11-4-2
Open AccessArticle

Effect of Absorber Bulk Defect Density on CIGS Solar Cell Performances

Boureima Traore1, , Soumaila Ouedraogo1, Issiaka Sankara1, Marcel Bawindsom Kébré1, Daouda 1,

1Département de Physique, Laboratoire de Matériaux et Environnement (LA.M.E)-UFR/SEA, Université Joseph Ki-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso

Pub. Date: September 19, 2023

Cite this paper:
Boureima Traore, Soumaila Ouedraogo, Issiaka Sankara, Marcel Bawindsom Kébré, Daouda , . Effect of Absorber Bulk Defect Density on CIGS Solar Cell Performances. International Journal of Physics. 2023; 11(4):174-179. doi: 10.12691/ijp-11-4-2

Abstract

In thin-film solar cells based on CIGS (Copper Indium Gallium Selenide), bulk defects are disruptions in the regular, periodic arrangement of atoms within the crystalline structure. This research utilizes numerical simulations and the SCAPS-1D software to investigate how volume defects within the CIGS absorber impact the performance of the solar cell. The study reveals three operational zones for the cell, depending on the concentration of defects in the CIGS absorber. An examination of the influence of absorber thickness, bandgap, and doping on CIGS solar cell performance in these operational zones is conducted. The results indicate that optimal performance is achieved when the density of bulk defects in the absorber is below 5.1013 cm-3 (Zone I). This optimization involves using an absorber with a thickness of approximately 2.5 μm, a bandgap ranging from 1.3 eV to 1.4 eV, and an acceptor density of NA = 1016 cm-3.

Keywords:
numerical simulation bulk défects cigs absorbe acceeptor density

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 9

References:

[1]  Smyth D.M., The Defect Chemistry of Metal Oxides, Oxford University Press, 2000.
 
[2]  Jackson, P., Hariskos, D., Wuerz, R., Wischmann, W., & Powalla, M. 2014. Compositional investigation of potassium doped CuIn1-xGaxSe2 solar cells with effciencies up to 20.8 %. Phys. Status Solid RRL, 8, 219-222.
 
[3]  Bouloufa A., Etude et Caractérisation des Semi-conducteurs Ternaires et Quaternaires CuIn1-xGaxSe2 par Spectroscopie Photo acoustique, Thèse de doctorat en électronique, Université Ferhat-Abbas, Sétif .2007.
 
[4]  Rau U., M. Schmidt, A. Jasenek, G. Hanna, and H. W. Schock, Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance, Solar Materials and Solar Cells, vol. 67, no. 1-4, pp. 137-143, 2001.
 
[5]  Schmid, D., Ruckh, M., & Schock, H.W. 1996. A Comprehensive Characterization of the Interfaces in Mo/CIS/CdS/ZnO Solar Cell Structures. Solar Energy Mater. Sol. Cells, 41, 281-294.
 
[6]  Niemegeers, A., Burgelman, M., Herberholz, R., Rau, U., Hariskos, D., & Schock, H.-W. 1998. Model for electronic transport in CuIn1-xGaxSe2 Solar Cells. Applied Physics Letters, 6, 407-421.
 
[7]  Oubda, D., Kebre, M. B., Zougmoré, F., Njomo, D., and Ouattara, F. 2015. Numerical Simulation of Cu(In,Ga)Se2 Solar Cells Performances. Journal of Energy and Power Engineering 9: 1047-55.
 
[8]  Ouédraogo, S., Zougmoré, F., & Ndjaka, J.M. 2013. Numerical Analysis of Copper-Indium-Gallium-Diselenide-Based Solar Cells by SCAPS-1D. Hindawi Publishing Corporation International Journal of Photoenergy, 2013, 9.
 
[9]  Kanevce, A. 2007. Anticipated performance of CuIn1-xGaxSe2 solar cells in the thin film limit. Ph.D. thesis, Colorado State University.
 
[10]  Buffière, M. 2011. Synthèse et caractérisation de couches minces de Zn(O,S) pour application au sein des cellules solaires à base de CuInGaSe_2. Ph.D. thesis, Université de nantes.
 
[11]  Shin, Y. M., Shin, D.H., Kim, J. H., & Ahn, B.T. 2011. Effect of Na doping using Na_2 S on the structure and photovoltaic properties of CIGS solar cells. Current Applied Physics, 11, S59-S64.
 
[12]  Wei. S.H., et A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys, J. Appl. Phys. 78 (1995) 3846-3856.
 
[13]  Gilles Wallez, 2014. Les défauts des matériaux cristallins. Université Pierre et Marie Curie, Paris 6.
 
[14]  Gloeckler, M., & Sites, J.R. 2005. Potential of submicrometer thickness CuInGaSe_2 solar cells. Journal of Appl. Phys, 98, 103703.
 
[15]  Ouédraogo, S., Zougmoré, F., & Ndjaka, J. M. B. (2014). Computational analysis of the effect of the surface defect layer (SDL) properties on CuIn1-xGaxSe2 based solar cell performances. Journal of Physics and Chemistry of Solids, 75(5), 688-695.
 
[16]  Pettersson, J., Platzer-Björkman, C., Zimmermann, U., & Edo_, M. 2011. Baseline model of graded-absorber Cu(In;Ga)Se2 solar cells applied to cells with Zn1-xMgxO buffer layers. Thin Solid Films, 519, 7476–7480.
 
[17]  Fabre, W. 2011. Silicim de type pour cellules à hétérojonction : caractérisations et modélisations. Ph.D. thesis, Université de paris-sud 11.
 
[18]  Johnson, P. K., Heath, J. T., Cohen, J. D., Ramanathan, K. et Sites, J. R. (2005). A comparative study of defect states in evaporated and selenized cigs(s) solar cells. Progress in photovoltaic and applications, 13:579–586.
 
[19]  Jehl, Z., 2012. Elaboration of ultrathin Copper Indium Gallium Di-Selenide based Solar Cells. Ph.D. thesis, université Paris Sud-Orsay (Paris XI).
 
[20]  Ouédraogo, S. 2016. Modélisation numérique d’une cellule solaire à couches minces à base de CIGS. Ph.D. thesis, Université Ouaga I Professeur J. K. Zerbo.
 
[21]  Chelvanathan, P., Hossain, M.I, & Amin, N. 2010. Performance analysis of copper-indium.gallium diselenide (CIGS) solar cells with various buffer layers by SCAPS. Current Applied Physics, 10, S387S391.
 
[22]  Huang, H. Chia-Hua. 2008. Effects of junction parameters on CuIn1-xGaxSe2 solar cells. Journal of Physics and Chemistry of Solids 69 (2008) 779., 69, 779.
 
[23]  Hanna, G., Jasenek, A., Rau, U., & Schock, H.W. 2001. Influence of the Ga-content on the bulk defect densities of CuIn1-xGaxSe2. Thin Solid Films, 387, 71–73.
 
[24]  Lundberg, O., Edo_, M., & Stolt, L. 2005. The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films, 480-481, 520.
 
[25]  Heath, J.T., Cohen, J.D., Shafarman, W.N., Liao, D.X., & Rockett, A.A. 2002. Effect of Ga content on defect states in CuIn1-xGaxSe2 photovoltaic devices. Appl. Phys. Lett., 80, 4540.