International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2021, 9(6), 286-307
DOI: 10.12691/ijp-9-6-5
Open AccessArticle

Spirals and Rings in Barred Galaxies by the ROTASE Model

Hongjun Pan1,

1Department of Chemistry, University of North Texas, Denton, TX 76203, USA

Pub. Date: December 01, 2021

Cite this paper:
Hongjun Pan. Spirals and Rings in Barred Galaxies by the ROTASE Model. International Journal of Physics. 2021; 9(6):286-307. doi: 10.12691/ijp-9-6-5

Abstract

This paper extends the application of the ROTASE model for the formation of spiral arms of disc galaxies with detailed description of most common spiral patterns of barred galaxies with substantially different types of morphologies, questions and confusions from readers about this model are addressed. The optical trail effect behind the spiral arm rotation is the result of the fluid mechanism and the natural consequence of the model. The morphologies of ring galaxies are classified into four categories: type I: single ring; type II: 8-shaped double ring; type III: 8-shaped double ring wrapped by a larger outer ring; type IV: single ring without spiral and bar. All four types of ring galaxies can be described by the ROTASE model. The ROTASE model predicts that the false impression of spiral arm rotating ahead of the galactic bar in the galaxy MCG+00-04-051 will change with time, it will look like a normal galaxy with about 30° to 40° bar rotation in the future and the galactic bar ends will look like rotating ahead of the spiral arms with further 10° to 15°bar rotation. The formation of one arm galaxies is due to that X-matter emission at one side of supermassive black hole is much stronger than other side. More evidence is found to support the explanation of the formation and the evolution of the Hoag’s object. The possible evolution of spiral pattern of galaxies is illustrated by UGC 6093 and M51. The spiral arm winding of the Milky Way could be tighter in the future based on the ROTASE model. The possibility of spiral arm formation by the density wave mechanism and the manifold mechanism are ruled out by the one side trail effect of the galaxy J101652.52-004630.0, the special spiral pattern of the galaxy MCG+00-04-051 with broken connection of spiral arm from galactic bar, the chain-link arm crossing style with sequential decrease of the luminosity along the ring lines, the special double ring pattern of the galaxy SDSS J015701.50-001644.4 as well as the one-arm galaxy NGC 4618.

Keywords:
ROTASE model formation of spiral arms X-matter black hole chain-link ring crossing

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Conselice C.; Wilkinson A.; Duncan K..; Mortlock, A. The evolution of galaxy number density at z < 8 and its implications, ApJ, 2016, 830, 83-99.
 
[2]  Hubble, E. The Classification of Spiral Nebulae, The Observatory, 1927, 50, 276-281.
 
[3]  Elmegreen, D.; & Elmegreen, B. Flocculent and grand design spiral structure in field, binary and group galaxies, MNRAS, 1982, 201, 1021-1034.
 
[4]  Elmegreen, D.; Elmegreen, B. Arm Classifications for spiral galaxies. ApJ, 1987, 314, 3-9.
 
[5]  McVitte, G.; Payne-Gaoschkin, C. A model of A spiral galaxy, MNRAS, 1951, 111 (5), 506-522.
 
[6]  Lin, C.; Shu F. On the spiral structure of disk galaxies. ApJ. 1964, 140, 646-655.
 
[7]  Shu, F. Six Decades of Spiral Density Wave Theory, Annu. Rev. Astron. Astrophys. 2016, 54, 667-724.
 
[8]  Julian, W.; Toomre, A. Non-axisymmetric responses of differentially rotating disks of stars, ApJ. 1966, 146, 810-830.
 
[9]  Romero-Gómez, M.; Masdemont, J.; Athanassoula, E.; García-Gómez, C. The origin of rR1 ring structures in barred galaxies, A&A 2006, 453, 39-45.
 
[10]  Romero-Gómez, M.; Athanassoula, E.; Masdemont, J.; García-Gómez, C. The formation of spiral arms and rings in barred galaxies, A&A, 2007, 472, 63-75.
 
[11]  Athanassoula, E.; Romero-Gómez, M.; Masdemont, J.; Rings and spirals in barred galaxies – I. Building blocks, MNRAS, 2009, 394(1), 67-81.
 
[12]  Athanassoula, M.; Romero-Gómez, M.; Bosma, A.; Masdemont, J. Rings and spirals in barred galaxies – II. Ring and spiral morphology, MNRAS, 2009, 400(4), 1706-1720.
 
[13]  Athanassoula, E.; Romero-Gómez, M.; Bosma, A.; Masdemont, J. Rings and spirals in barred galaxies – III. Further comparisons and links to observations, MNRAS, 2010, 407(3), 1433-1448.
 
[14]  Dobbs, C.; Theis, C.; Pringle, J.; Bate, M. Simulations of the grand design galaxy M51: a case study for analysing tidally induced spiral structure Mon. Not. R. Astron. Soc. 2010, 403, 625-645.
 
[15]  Dobbs, C,; Baba, J. Dawes Review 4: Spiral Structures in Disc Galaxies, PASA, 2014, Vol. 31, e035.
 
[16]  Pan, H. New formulas and mechanism for the spiral arm formation of Galaxies. IJP., 2019. 7, 73-85.
 
[17]  Pan, H. Application of new formulas for the spiral arm formation to selected galaxies with special patterns. A JAA. 2020, 8, 45-66.
 
[18]  Pan, H. Pitch angle calculation of spiral galaxies based on the ROTASE model. IPJ. 2021, 9, 71-82.
 
[19]  Hawking, S. A brief history of time, (Bantam Books, NY, NY), 1998, pp 10. ISBN 0-553-10953-7.
 
[20]  Grand, R. J. J., Kawata D., Cropper M., Spiral arm pitch angle and galactic shear rate in N-body simulations of disc galaxies, A&A, 2013, 553, A77.
 
[21]  Berrier, J. C., Davis B. L., Kennefick D. et al., Further Evidence for a Supermassive Black Hole Mass-Pitch Angle Relation, ApJ, 2013, 769, 132.
 
[22]  Ringermacher, H. and Mead, L., Simple fit of data relating supermassive black hole mass to galaxy pitch angle, AJ, 2009, 137, 4716-4717.
 
[23]  Seigar, M.; James, P. The structure of spiral galaxies—II. Near-infrared properties of spiral arms”, MNRAS. 1998, 299, 685-698.
 
[24]  Walmsley, M. et al.; Galaxy Zoo DECaLS: Detailed Visual Morphology Measurements from Volunteers and Deep Learning for 314,000 Galaxies, 2021, https://arxiv.org/abs/2102.08414v1.
 
[25]  Contopoulos, G.; Grosbol, P. Stellar dynamics of spiral galaxies: nonlinear effects at the ¼ resonance, Astron. Astrophys. 1986, 155, 11-23.
 
[26]  Buta, R. Resonance Rings and Galaxy morphology, Astrophys. Space Sci. 1999, 269-270: 79-99.
 
[27]  Buta, R., The catalog of southern ringed galaxies, ApJS. 1995, 96, 39-116.
 
[28]  Buta, R., Galactic rings revisited. II. Dark gaps and the locations of resonances in early-to-intermediate-type disc galaxies, MNRAS. 2017, 470, 3819-3849.
 
[29]  Buta, R.; Byrd, G. A Hubble space telescope study of star formation in the inner resonance ring of NGC 3081. AJ. 2004, 127, 1982-2001.
 
[30]  Buta, R.; Burcell, G. NGC 3081: Surface photometry and kinematics of a classic resonance ring barred galaxy. AJ, 1998, 115, 484-501.
 
[31]  Hoag, A. A., A peculiar object in Serpens, Astron. J., 1950, 55, 170.
 
[32]  Brosch, N., The nature of Hoag’s object: the perfect ringed galaxy, Astron. Astrophys. 1985, 153, 199-206.
 
[33]  Toomre, A., in Evolution of galaxies and stellar populations, ed. R. B. Larson and B. M. Tinsley (New Havenn: Yale University Observatory), p 401.
 
[34]  Theys, J.C., and Spiegel, E. A., Ring Galaxies II. ApJ., 1977, 212, 616-633.
 
[35]  Schweizer, et. al., The structure and evolution of Hoag’s object, AJ., 1987, 320 454-463.
 
[36]  Kaczmarek, J. and Eric M. Wilcots, E., High-resolution H i distributions and multi-wavelength analysis of magellanic spi-rals NGC 4618 AND NGC 4625, The Astronomical Journal, 2012, 144: 67 (13pp).
 
[37]  Sellwood J.; Carlberg R. Spiral instabilities: mechanism for recurrence, MNRAS. 2019, 489, 116-131.
 
[38]  Levine, E., Blitz, L., Heiles, C., The Spiral Structure of the outer Milky Way in Hydrogen, Science, 2006, 312, 1773-1777.
 
[39]  Jacques P. Vallée, The Spiral Arms and Interarm Separation of the Milky Way: An Updated Statistical Study, AJ. 2005, 130, 569-575.
 
[40]  Ma J., A Method of Obtaining the Pitch Angle of Spiral Arms and the Inclination of Galactic Discs, Chin. J. Astron. Astrophys., 2001, 1, 395.
 
[41]  Seigar M. S., Kennefick D., Kennefick J., Lacy C. H. S., Discovery of a relationship between spiral arm morphology and supermassive black hole in disk galaxies, ApJ, 2008, 678, L93.
 
[42]  Karachentsev I. D., Karachentseva V. E., Commun. Byurak. Obs., 1967, 38, 47.
 
[43]  Kennicutt, R. C., Jr. The shapes of spiral arms along the Hubble sequence, AJ. 1981, 86, 1847-1858.
 
[44]  Ringermacher H., Mead L., 2009, A new formula describing the scaffold structure of spiral galaxies, MNRAS, 2009, 397, 164-171.
 
[45]  Hajdukovic, D.S. Do we live in the universe successively dominated by matter and antimatter? Astrophys Space Sci. 2011, 334, 219-223.
 
[46]  Becerra-Vergara, E., Argüelles, C., Krut1, A., Rueda, J., and Ruffini, R. Geodesic motion of S2 and G2 as a test of the fermionic dark matter nature of our Galactic core, A&A 2020, 641, A34.