[1] | E. R. Davies, Computer & Machine Vision, Theory Algorithms Practicalities, Elsevier, p. 934. |
|
[2] | S. Har-Peled, B. Sadri, How fast is the k-means method?, Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages, Philadelphia, PA, USA, 877–885, (2005). |
|
[3] | D. Arthur, S. Vassilvitskii,K-means++: the advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, (2007). |
|
[4] | W. H. E. Day, H. Edelsbrunner, Efficient algorithms for agglomerative hierarchical clustering methods, Journal of Classification, 1,7-24, (1984). |
|
[5] | M. Muja, D. G. Lowe, Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration, in International Conference on Computer Vision Theory and Applications, VISAPP'09, (2009). |
|
[6] | M. Ester, H.-P. Kriegel, J. Sander, X. Xu E. Simoudis, J. Han, U. Fayyad, A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, vol. 1AAAI Press (1996), pp. 226-231. |
|
[7] | C. C. Chang, C.-J. Lin., LIBSVM, a library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2:27: 1-27:27, (2011). |
|
[8] | O. Kadri, L. H. Mouss, M. D. Mouss, Fault diagnosis of rotary kiln using SVM and binary ACO, The Journal of Mechanical Science and Technology, vol. 26, no. 2, pp.601-608, (2012). |
|
[9] | K. Fukunaga, Introduction to Statistical Pattern Recognition., New York: Academic Press, (1990). |
|
[10] | R.K. Agrawal, R. Bala, Incremental Bayesian classification for multivariate normal distribution data, Volume 29, Issue 13, pp.1873-1876, (2008). |
|
[11] | D. Coomans, D.L. Massart, Alternative k-nearest neighbour rules in supervised pattern recognition, k-Nearest neighbour classification by using alternative voting rules, , AnalyticaChimica, Acta 136, pp. 15-27, (1982). |
|
[12] | B. Yao, F. Li,P. Kumar, K-Nearest Neighbor Queries and KNN-Joins in Large Relational Databases (Almost) for Free, Data Engineering (ICDE), 2010 IEEE 26th International Conference, pp. 4-15, (2010). |
|
[13] | L. Breiman, A. Cutler, Random Forests, available at: <www.stat.berkeley.edu/~breiman/RandomForests/cc_graphics.htm>. |
|
[14] | Bo-Suk Yang, Random forests classifier for machine fault diagnosis, The Journal of Mechanical Science and Technology, vol. 22, no. 9, pp.1716-1725, (2008). |
|
[15] | J. Friedman, Greedy Function Aproximation, A Gradient Boosting Machine, Feb. 24, 1999, available at: <docs.salford-systems.com/GreedyFuncApproxSS.pdf>. |
|
[16] | Y. LeCun, L. Bottou, G.B. Orr and K.R. Muller, Efficient backprop, in Neural Networks, Tricks of the Trade, Springer Lecture Notes in Computer Sciences 1524, pp.5-50. |
|
[17] | K. Židek, E, Rigasová, Diagnostics of Products by Vision System, Applied Mechanics and Materials, Trans Tech Publications, Switzerland, , Vol. 308, 33-38, (2013). |
|