Journal of Automation and Control. 2019, 7(1), 25-32
DOI: 10.12691/automation-7-1-4
Open AccessArticle
Orlando Regalón Anias1, , Francisco Herrera Fernández2, Milagros Diez Rodríguez1 and Douglas D. Crockett3
1Camagüey University, North Circumvallation km 4 1/2, Camagüey, Cuba
2Central University of Las Villas, Camajuaní Road km 7 1/2, Santa Clara, Cuba
3Peace Corps México, Avenida Universidad, Santiago de Queretaro, Queretaro, México
Pub. Date: October 15, 2019
Cite this paper:
Orlando Regalón Anias, Francisco Herrera Fernández, Milagros Diez Rodríguez and Douglas D. Crockett. Analytical Design Method of PI Regulators for First Order Plants Control. Journal of Automation and Control. 2019; 7(1):25-32. doi: 10.12691/automation-7-1-4
Abstract
In this paper we propose a designing method for proportional-integral (PI) regulators to control first order plants. It’s based on the analytical expression of the control loop temporal response for a step input, obtained by using inverse Laplace transform. For the application of this method, the desired peak time and maximum overshoot are set as design specifications. The proposed design method is compared with a pole placement method, and adjustments are made to meet design specifications with a discrete implementation of the regulator. Finally, we shown the actual application and performance of this method in a direct current electric drive control.Keywords:
analytic design design methodologies proportional-integral-derivative (PID) controllers process modeling and identification linear control
This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/
Figures
References:
[1] | Meshram, P. M., Kanojiya., Rohit G. 2012. Tuning of PID controller using Ziegler-Nichols method for speed control of DC motor. International Conference on Advances in Engineering, Science and Management (ICAESM). 117-122. |
|
[2] | Aström, K., y Hägglund, T. 1995. PID Controllers, 2nd Edition. Instrument Society of America, Research Triangle Park, NC. |
|
[3] | Franklin, G., Powell, D., Workman, M. 1998. Digital Control of Dynamic System, 3rd Edition. Addison Wesley Longman Inc., Menlo Park, CA. |
|
[4] | Singh, Ch. 2015. Genetic Algorithms Based PID controller Design. International Journal of Engineering Development and Research 3, 1-4. |
|
[5] | Ogata, K. 2010. Ingeniería de Control Moderna, 5ta Edición. Pearson Educación S.A. Madrid. |
|
[6] | Regalón, O., Rodríguez, V., Diez, M., Báez, R. 2012. Aplicación de algoritmos de control clásico, adaptable y robusto a sistemas dinámicos de parámetros variables. Ingeniería Energética 33, 184-195. |
|
[7] | Aguado, A. 2000. Temas de identificación y control adaptable. ICIMAF. La Habana. |
|
[8] | Ljung, L. 2014. System Identification Toolbox. User Guide. The MathWorks, Inc. Natick, MA. |
|
[9] | Abd El-Hamid, A., Eissa, A., Abouel-Fotouh, A., Abdel-Fatah, M. 2015. Comparison Study of Different Structures of PID Controllers. Research Journal of Applied Sciences, Engineering and Technology 11, 645-652. |
|
[10] | Abramovitch, D. 2015. A unified framework for analog and digital PID controllers. IEEE Conference on Control Applications (CCA), 1492-1497. |
|