American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Nanomaterials. 2018, 6(1), 15-23
DOI: 10.12691/ajn-6-1-2
Open AccessReview Article

Recent Advances of ZnO Based Nanowires and Nanorods Devices

Ahmed M. Nahhas1,

1Department of Electrical Engineering, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

Pub. Date: June 09, 2018

Cite this paper:
Ahmed M. Nahhas. Recent Advances of ZnO Based Nanowires and Nanorods Devices. American Journal of Nanomaterials. 2018; 6(1):15-23. doi: 10.12691/ajn-6-1-2


This paper presents the recent advances of the Zinc Oxide (ZnO) based nanowires and nanorods devices. ZnO has gained a substantial interest in the research area of the wide bandgap semiconductors due to its unique electrical, optical and structural properties. ZnO is considered as one of the major candidates for electronic and photonic applications. Also, it has distinguished and interesting electrical and optical properties. ZnO is considered as a potential contender in optoelectronic applications such as solar cells (SCs), surface acoustic wave devices, and ultraviolet (UV) emitters. The ZnO as a nanostructured material exhibits many advantages for nanodevices. ZnO nanostructured material has the ability to absorb UV radiation and immense in many optical applications. Recently, ZnO nanostructured based devices have gained much attention due to their various potential applications. ZnO as nanomaterial has been used in many devices such as UV photodetectors (PDs), light emitting diodes (LEDs), and transistors. The recent aspects of ZnO nanowires and nanorods based devices are presented and discussed.

ZnO Gallium nitride (GaN) nanostructured doping LEDs nanowires nanorods UV

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 19


[1]  Khan, I., Khan, S., Nongjai, R., Ahmed, H., and Khan, W., “Hydrothermal synthesis of zinc oxide powders with controllable morphology,” Optical Materials, 35. 1189-1193. 2013.
[2]  Xu, H., Wang, H., Zhang, Y., He, W., Zhu, M., Wang, B., and Yan, H., “Structural and optical properties of gel-combustion synthesized Zr doped ZnO nanoparticles,” Ceramics International, 30. 93-97. 2004.
[3]  Kung, S., and Sreenivas, K., “Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering,” AIP Conference Proceedings, 1731. 1-3. 2016.
[4]  Li, Y., Bando, Y., and Golberg, D., “ZnO nanoneedles with tip surface perturbations: Excellent field emitters,” Applied Physics Letters, 84. 3603. 2004.
[5]  Saito, M., and Fujihara, S., “Large photocurrent generation in dye-sensitized ZnO solar cells,” Energy & Environmental Science, 1. 280-283. 2008.
[6]  Zhou, J., Wu, X., Xiao, D., Zhuo, M., Jin, H., Luo, J., and Fu, Y., “Deposition of aluminum doped ZnO as electrode for transparent ZnO/glass surface acoustic wave devices,” Surface and Coatings Technology, 320. 39-46. 2017.
[7]  Choi, Y., Kang, J., Hwang, D., and Park, S., “Recent advances in ZnO based light-emitting diodes,” IEEE Transactions on Electronic Devices, 57. 26-41. 2010.
[8]  Zhang, M., Gao, X., Barra, A., Chang, P., Huang, L., Hellwarth, R., and Lu, J., “Core-shell structured Si/ZnO photovoltaics,” Materials Letters, 140. 59-63. 2015.
[9]  Hossaini, H., Moussavi, G., and Farrokhi, M., “Oxidation of diazinon in cns-ZnO/LED photocatalytic process: Catalyst preparation, photocatalytic examination, and toxicity bioassay of oxidation by products,” Separation and purification technology, 174. 320-330. 2017.
[10]  Sabah, M., Hassan, Z., Naser, M., Al-hardan, H., and Bououdina, M., “Fabrication of low cost UV photo detector using ZnO nanorods grown onto nylon substrate,” Journal of Materials Science, 26. 1322-1331. 2015.
[11]  Pandya, H., Chandra, S., and Vyas, A., “Integration of ZnO nanostructures with MEMS for ethanol sensor,” Sensors and Actuators B, Chemical, 161. 923-928. 2012.
[12]  Taube, A., Sochacki, M., Kwietniewski, N., Werbowy, A., Gierałtowska, S., Wachnicki, L., Godlewski, M., and Szmidt, J., “Electrical properties of isotype and anisotype ZnO/4H-SiC heterojunction diodes,” Applied Physics Letters, 110. 1120-1124. 2017.
[13]  Sin, L., Arshad, M., Fathil, M., Adzhri, R., Nuzaihan, N., Ruslinda, A., Gopinath, S., and Hashim, U., “Zinc oxide interdigitated electrode for biosensor application,” AIP Conference Proceedings, 1733. 020075. 2016.
[14]  Tvarozek, V., Shtereva, K., Novotny, I., Kovac, J., Sutta, P., Srnanek, R., and Vincze, A., “RF diode reactive sputtering of n- and p-type zinc oxide thin films,” Vacuum, 82. 166-169. 2007.
[15]  Liu, G., Rahman, E., and Ban, D., “Performance optimization of p-n homojunction nanowire based piezoelectric nanogenerators through control of doping concentration,” Journal of Applied Physics, 118. 094307. 2017.
[16]  Humid, H., and Celik-Butler, Z., “Li-ZnO nanowire carpet as a micro-newton force sensor with nanometer res,” IEEE Sensors Conferences, 1-3. 2017.
[17]  Pemmaraju, C., Archer, T., Hanafin, R., and Sanvito, S., “Investigation of n-type donor defects in Co-doped ZnO,” Journal of Magnetism and Magnetic Materials, 316. e185-e187. 2007.
[18]  Saroj, R., and Dhar, S., “Relationship between dislocation and the visible luminescence band observed in ZnO epitaxial layers grown on c-plane p-GaN templates by chemical vapor deposition technique,” Journal of Applied Physics, 120. 075701. 2016.
[19]  Urgessa, N., Dobson, S., Talla, K., Murape, D., Venter, A., and Botha, J., “Optical and electrical characteristics of ZnO/Si heterojunction,” Physica B, Condensed Matter, 439. 149-152. 2014.
[20]  Alivov, R., Kalinina, E., Cherenkov, A., Look, D., Ataev, B., Omaev, A., Chukichev, M., and Bagnall, D., “Fabrication and characterization of n-ZnO/p-AlGaN n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates,” Applied Physics Letters, 83. 4719. 2003.
[21]  Alvi, N., Riaz, M., Tzamalis, G., Nur, O., and Willander, M., “Fabrication and characterization of high-brightness light emitting diodes based on n-ZnO nanorods grown by a low-temperature chemical method on p-4H-SiC and p-GaN,” Semiconductor Science and Technology, 25. 065004. 2010.
[22]  Li, Y., and Meng, J., “Al-doping effects on structure and optical properties of ZnO nanostructures,” Journal of Materials letters, 117. 260-262. 2014.
[23]  Chaabouni, Y., Khalfallah, B., and Abaab, M., “Doping Ga effect on ZnO radio frequency sputtered films from a powder target,” Thin Solid Films, 617. 95-102. 2016.
[24]  Ahmad, M., Zhao, J., Iqbal, J., Miao, W., Xie, L., Mo, R., and Zhu, J., “Conductivity enhancement by slight indium doping in ZnO nanowires for optoelectronic applications,” Journal of Physics D: Applied Physics, . 0022-3727. 2009.
[25]  Chen, Y., Huang, I., Chang, S., and Hsueh, T., “Photodetector of ZnO nanowires based on through-silicon via approach,” IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), 123-124. 2016.
[26]  Yi, G., Wang, C., and Park, W., “ZnO nanorods: synthesis, characterization and applications,” Semiconductor Science and Technology, 20. S22-S34. 2005.
[27]  Tan, S., Umar, A., Balouch, A., Yahaya, M., Yap, C., Salleh, M., and Oyama, M., “ZnO nanocubes with (101) basal plane photocatalyst prepared via a low-frequency ultrasonic assisted hydrolysis process,” Ultrasonics Sonochemistry, 21. 754-760. 2014.
[28]  Pan, Z., Dai, Z., and Wang, Z., “Nanobelts of semiconducting oxides,” Science, 291. 1947-1949. 2001.
[29]  Jianming, J., Xiaoqin, F., and Guibin, C., “Electromechanical properties of a zigzag ZnO nanotube under local torsion,” Journal of Nanoparticle Research, 15. 1-9. 2013.
[30]  Bhavsar, K., Ross, D, Prabhu, R., and Pollard, P., “LED-controlled tuning of ZnO nanowires' wettability for biosensing applications,” Nano Reviews, 6. 1-6. 2015.
[31]  Logothetidis, S., Laskarakis, A., Kassavetis, S., Lousinian, S., Gravalidis, C., and Kiriakidis, G., “Optical and structural properties of ZnO for transparent electronics,” Thin Solid Films, 516. 1345-1349. 2008.
[32]  Pal, A., and Mohan, D., “Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter,” Nanotechnology, 28. 415707-415707. 2017.
[33]  Serhane, R., Messaci, S., Lafane, S., Khales, H., Aouimeur, W., Bey, A., and Boutkedjirt, T., “Pulsed laser deposition of piezoelectric ZnO thin films for bulk acoustic wave devices,” Applied Surface Science, 288. 572-578. 2014.
[34]  Nie, Y., Deng, P., Zhao, Y., Wang, P., Xing, L., Zhang, Y., and Xue, X., “The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H₂S sensor,” Nanotechnology, 25. 265501. 2014.
[35]  Tan, Q., Wang, J., Zhong, X., Zhou, Y., Wang, Q., Zhang, Y., Zhang, X., and Huang, S., “Impact of ZnO Polarization on the characteristics of metal-ferroelectric-ZnO field effect transistor,” IEEE Transactions on Electron Devices, 58. 2738-2742. 2011.
[36]  Fail, P., and Furtado, C., “Effect of composition on electrical response to humidity of TiO2:ZnO sensors investigated by impedance spectroscopy,” Sensors and Actuators B: Chemical, 181. 720-729. 2013.
[37]  Panda, D., and Tseng, T., “One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications,” Journal of Materials Science, 48. 6849-6877. 2013.
[38]  Zhao, Q., Huang, C., Zhu, R., Xu, J., Chen, L., and Yu, D., “2D planar field emission devices based on individual ZnO nanowires,” Solid State Communications, 151. 1650-1653. 2011.
[39]  Lokman, A., Arof, H., Wadi, S., Harith, Z., Rafaie, H., and Nor, R.,Optical fiber relative humidity sensor based on Inline Mach-Zehnder interferometer with ZnO nanowires coating,” IEEE Sensors Journal, 16. 312-316. 2016.
[40]  Willander, M., and Klason, P., “ZnO nanowires: Chemical growth, electrodeposition, and application to intracellular nano-sensors,” Physica Status Solidi, C 5. 3076-3083. 2008.
[41]  Lupan, O., Emelchenko, G., Ursaki, V., Chai, G., Redkin, A., Gruzintsev, A., Tiginyanu, I., Chow, L., Ono, L., Cuenya, B., Heinrich, H., and Yakimov, E., “Synthesis and characterization of ZnO nanowires for nanosensor applications,” Materials Research Bulletin, 45.1026-1032. 2010.
[42]  Ramgir, N., Kaur, M., Sharma, P., Datta, N., Kailasaganapathi, S., Bhattacharya, S., Debnath, A., Aswal, D., and Gupta, S., “Ethanol sensing properties of pure and Au modified ZnO nanowires,” Sensors and Actuators. B, Chemical, 187. 313-318. 2013.
[43]  Zhao, Q., Klason, P., and  Willander, M., “Growth of ZnO nanostructures by vapor liquid solid method,” Applied Physics A, 88. 27-30. 2007.
[44]  Pan, M., Fenwick, W., Strassburg, M., Li, N., Kang, H., Kane, M., Asghar, A. Gupta, S., Varatharajan, R., Nause, J., El-Zein, N., Fabiano, P., Steiner, T., and Ferguson, I., “Metal organic chemical vapor deposition of ZnO,” Journal of Crystal Growth, 287. 688-693. 2006.
[45]  Chiu, S., and Huang, J., “Chemical bath deposition of ZnO and Ni doped ZnO nanorod,” Journal of Non-Crystalline Solids, 358. 2453-2457. 2012.
[46]  Polsongkram, D., Chamninok, P., Pukird, S., Chow, L., Lupan, O., Chai, G., Khallaf, H., Park, S., and Schulte, A., “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Physica B: Condensed Matter, 403. 3713-3717. 2008.
[47]  Wang, L., Chauveau, J., Brenier, R., Sallet, V., Jomard, F., Sartel, C., and Bremond, G., “Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy,” Applied Physics Letters, 108. 108-112. 2016.
[48]  Yadav, L., Mehta, B., and Singh, J., “Effect of gaseous atmosphere on photoinduced water wetting of ZnO nanowires,” AIP Conference Proceedings, 1731. 080044. 2016.
[49]  Jabri, S., Souissi, H., Lusson, A., Sallet, V., Meftah, A., Galtier, P., and Oueslati, M., “The ratio Oxygen/Zinc effect on photoluminescence emission line at 3.31 eV in ZnO nanowires,” Journal of Applied Physics, 119. 205710. 2016.
[50]  Akgul, G., and Akgul, F., “Fabrication and characterization of Ga-doped ZnO/Si heterojunction nanodiodes,” AIP Conference Proceedings, 1815. 110001. 2017.
[51]  Shoaee, S., Briscoe, J., Durrant, J., and Dunn, S., “Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance,” Advanced Materials, 26. 263-268. 2014.
[52]  Long, H., Fang, G., Li, S., Mo, X., Wang, H., Huang, H., Jiang, Q., Wang, J., and Zhao, X., “A ZnO/ZnMgO multiple quantum well ultraviolet random laser diode,” IEEE Electron Device Letters, 32. 54-56. 2011.
[53]  Hwang, J., Wang, F., Kung, C., and Chan, M., “Using the surface plasmon resonance of Au nanoparticles to enhance ultraviolet response of ZnO nanorods based schottky barrier photodetectors,” IEEE Transactions on Nanotechnology, 14. 318-321. 2015.
[54]  Sipr, O., and Rocca, F., “Zn K edge and O K edge x-ray absorption spectra of ZnO surfaces: Implications for nanorods,” Journal of Physics: Condensed Matter, 23. 315501. 2011.
[55]  Yang, J., Wang, Y., Kong, J., Yu, M., and Jin, H., “Synthesis of Mg-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties,” Journal of alloys and compounds, 657. 261-267. 2016.
[56]  Montenegro, D., Souissi, A., Tomas, C., Sanjose, V., and Sallet, V., “Morphology transitions in ZnO nanorods grown by MOCVD,” Journal of Crystal Growth, 359. 122-128. 2012.
[57]  Mendelsberg, R., Kerler, M., Durbin, S., and Reeves, R., “Photoluminescence behavior of ZnO nanorods produced by eclipse PLD from a Zn metal target,” Superlattices and Microstructures. 43. 594-599. 2008.
[58]  Sang, N., Beng, T., Jie, T., Fitzgerald, E., and Jin, C., “Fabrication of p-type ZnO nanorods/n-GaN film heterojunction ultraviolet light emitting diodes by aqueous solution method,” Physica Status Solidi. A 210. 1618-1623. 2013.
[59]  Mustafa, M., Iqbal, Y., Majeed, U., and Sahdan, M., “Effect of precursor’s concentration on structure and morphology of ZnO nanorods synthesized through hydrothermal method on gold surface,” AIP Conference Proceedings, 1788. 030120. 2017.
[60]  Shirahata, Y., Tanaike, K., Akiyama, T., Fujimoto, K., Suzuki, A., Balachandran, J., and Oku, T., “Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells,” AIP Conference Proceedings, 1709. 020018. 2016.
[61]  Mohar, R., Iwan,S., Djuhana, D., Imawan, C., Harmoko, A., and Fauzia, V., “Post-annealing effect on optical absorbance of hydrothermally grown zinc oxide nanorods,” AIP Conference Proceedings, 1729. 020024. 2016.
[62]  Lestari, A., Iwan, S., Djuhana, D., Imawan, C., Harmoko, A., and Fauzia, V., “Effect of precursor concentration on the structural and optical properties of ZnO nanorods prepared by hydrothermal method,” AIP Conference Proceedings, 1729. 020027. 2016.
[63]  Iwan, S., Fauzia, V., Umar, A., and Sun, X., “Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction,” AIP Conference Proceedings, 1729. 020031. 2016.
[64]  Mohamed, R., Ismail, A., Khusaimi, Z., Mamat, M., Alrokayan, S., Khan, H., and Rusop, M., “Percentage of different aluminum doping influence the morphological and optical properties of ZnO nanostructured growth for sensor application,” AIP Conference Proceedings, 1733. 020061. 2016.