American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2017, 5(2), 59-67
DOI: 10.12691/ajn-5-2-3
Open AccessArticle

Effect of Oxygen Deposition Pressure on the Structure and the Metal Insulator Transition in Pulsed Laser Deposited VO2 Films on Soda Lime Glass

NM Ndiaye1, M Thiam1, BD Ngom1, 2, , O Sakho1, M Chaker3, N Manyala4 and AC Beye1

1Laboratory of Photonics and Nano-Fabrication, Solid State and Materials Sciences Group (GPSSM), Faculty of Sciences and Technics, University of Cheikh Anta Diop of Dakar (UCAD) B.P. 25114 Dakar-Fann Dakar (Senegal)

2National Institute for Scientific Research, Center: Energy-Materials-Telecommunications, 1650, Boul. Lionel Boulet, Varennes (Québec) J3X 1S2
UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, Pretoria 2000, South Africa
Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation of South Africa, Somerset West 7129, Western Cape, South Africa

3National Institute for Scientific Research, Center: Energy-Materials-Telecommunications, 1650, Boul. Lionel Boulet, Varennes (Québec) J3X 1S2

4Department of Physics, SARChI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria, South Africa

Pub. Date: October 14, 2017

Cite this paper:
NM Ndiaye, M Thiam, BD Ngom, O Sakho, M Chaker, N Manyala and AC Beye. Effect of Oxygen Deposition Pressure on the Structure and the Metal Insulator Transition in Pulsed Laser Deposited VO2 Films on Soda Lime Glass. American Journal of Nanomaterials. 2017; 5(2):59-67. doi: 10.12691/ajn-5-2-3

Abstract

Vanadium dioxide thin films nanostructures were synthesized by pulsed laser deposition on soda lime glass at a substrate temperature of 600°C and the effects of the oxygen deposition pressure on the crystalline structure and the phase transition characteristics of VO2 nanostructured films were investigated. The structure and microstructure of the films have been examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicate that the crystal structure of the films is strongly sensitive to the oxygen deposition pressure; exhibiting sharp a-axis diffraction peaks, showing a texturation along (1 0 0) plane. A detailed description of the growth mechanisms and the substrate–film interaction is given, and the characteristics of the electronic transition and hysteresis of the phase transition are described in terms of the morphology, grain boundary structure and crystal orientation. The sharpness of the transition and the hysteresis upon heating and cooling are found to be strong functions of the crystal structure and microstructure (grain size).

Keywords:
B. Crystal growth A. Optical Material A. Thin Films C. X-ray Diffraction D. Phase Transition

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  D. Adler, Mechanisms for Metal-Nonmental Transitions in Transition-Metal Oxides and Sulfides, Rev. Mod. Phys. 40 (4) (1968) 714.
 
[2]  M. Maaza , K. Bouziane, J. Maritz, D. S. McLachlan, R. Swanepool, J. M. Frigerio, M. Every, Direct production of thermochromic VO2 thin film coatings by pulsed laser ablation, Optical Materials. Vol .15, Iss. 1 (2000) 41-45.
 
[3]  A. Kaushal, N. Choudhary, N. Kaur, D. Kaur, VO2–WO3 nanocomposite thin films synthesized by pulsed laser deposition technique, Applied Surface Science. Vol.257, Iss. 21, (2011) 8937-8944.
 
[4]  F. J. Morin, Physical Review Letters. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature, 3 (1959) 34.
 
[5]  J. B. Goodenough, The two components of the crystallographic transition in VO2, Journal of Solid State Chemistry. Vol.3, Iss.4 (1971) 490-500.
 
[6]  T. W. Chiu, R. T. Hong, K. Tonooka, N. Kikuchi, Microstructure of orientation controlled VO2 thin films via ZnO buffer, Thin Solid Films. 529 (2013) 119-122.
 
[7]  L. Zhao, L. Miao, S. Tanemura, J. Zhou, L. Chen, X. Xiao, G. Xu, A low cost preparation of VO2 thin films with improved thermochromic properties from a solution-based process, Thin Solid Films. 543 (2013) 157-161.
 
[8]  C. H. Griffiths and H. K. Eastwood, Influence of stoichiometry on the metal‐semiconductor transition in vanadium dioxide, Journal of Applied Physics. Vol.45, Iss.5 (1974) 2201.
 
[9]  I. P. Parking, T. D. Manning, Intelligent Thermochromic Windows, Journal of Chemical Education. 83 3 (2006) 393-400.
 
[10]  M. Fukuma, S. Zembutsu, and S. Miyazawa, Preparation of VO2 thin film and its direct optical bit recording characteristics, Applied Optics. Vol. 22, Iss.2 (1983) 265-268.
 
[11]  J.-G. Ramírez, A. Sharoni, Y. Dubi, M. E. Gómez, and Ivan K. Schuller, first-order reversal curve measurements of the metal-insulator transition in VO2: Signatures of persistent metallic domains, PHYSICAL REVIEW B 79, 235110 (2009).
 
[12]  T. E. Phillips, R. A. Murphy, T. O. Poehler, Electrical studies of reactively sputtered Fe-doped VO2 thin films, Materials Research Bulletin. Vol.22, Iss.8 (1987) 1113-1123.
 
[13]  J. B. M. Chesney, H. J. J. Guggenhein, Growth and electrical properties of vanadium dioxide containing selected impurity ions, Phys. Chem. Solids. 30 (1969) 225-234.
 
[14]  H. Koo, S. Yoon, O. J. Kwon, K. E. Ko, D. Shin, S. H. Bae, S. H. Chang, C. Park, Effect of lattice misfit on the transition temperature of VO2 thin film, Journal of Materials Science. 47 (2012) 6397-6401.
 
[15]  H. Koo, H. W. You, K. E. Ko, O. J. Kwon, S. H. Chang, C. Park, Thermochromic properties of VO< sub> 2</sub> thin film on SiN< sub> x</sub> buffered glass substrate, Applied Surface Science. 277 (2013) 237-241.
 
[16]  J. B. Kana Kana, J. M. Ndjaka, P. O. Ateba, B. D. Ngom, N. Manyala, O. Nemraoui, A. C. Beye, M. Maaza, Thermochromic VO2 thin films synthesized by rf-inverted cylindrical magnetron sputtering, Applied Surface Science. 254(13) (2008) 3959-3963.
 
[17]  G. A. Rozgonyi and D. H. Hensler, Structural and Electrical Properties of Vanadium Dioxide Thin Films, J. Vac. Sci. Technol. 5 (1968) 194.
 
[18]  D. K. Roger, J. A. Coath and M. C. Lovell, Characterization of epitaxially grown films of vanadium oxides, J.Appl.Phys. 70 (1991) 1412.
 
[19]  J. Li ; N. Yuan, Formation mechanism of the VO2 polycrystalline film prepared by modified ion-beam enhanced deposition, Proc. Spie. 5774 (2004) 232.
 
[20]  S. B. Wang, S. B. Zhou, G. Huang, X. J. Yi, VOx thin films obtained by ion beam sputtering and oxidation process, Surface and Coatings Technology. Vol.191, Iss.2–3, (2005) 330-334.
 
[21]  K. V. Steensel, F. Van de Burg and C. Kooy, Philips, Thin-Film Switching Elements of V0, Research Reports. 22 (1967)170-177.
 
[22]  G. A. Nyberg and R. A. Buhrman, Preparation and Optical-Properties of Reactively Evaporated VO2 Thin-Films., J. Vac. Sci. Technol. 2 (A 1984) 301.
 
[23]  C. B. Greenberg, Undoped and doped VO2 films grown from VO(OC3H7)3, Thin Solid Films. Vol.110, Iss.1, (1983) 73-82.
 
[24]  S. Koide and H. Takei, Epitaxial Growth of VO2 Single Crystals and Their Anisotropic Properties in Electrical Resistivities, J. Phys. Soc. Jpn. 229 (1967) 946.
 
[25]  M. Maaza , D. Hamidi, A. Simo, T. Kerdja, A. K. Chaudhary, J. B. Kana Kana, Optical limiting in pulsed laser deposited VO2 nanostructures, Optics Communications. Vol.285, Iss.6, (2012) 1190-1193.
 
[26]  F. A. Chudnovskiy, G. B. Stefanovich, Metal-insulator phase transition in disordered VO2, J. Solid. State. Chen. 98 (1992) 137.
 
[27]  G. B. Stefanovich, A. L. Pergament, A. A. Velichko, L. A. Stefanovich, Anodic oxidation of vanadium and properties of vanadium oxide films, Journal of Physics: Condensed Matter. Volume 16, n°23, (2004) 4013.
 
[28]  Y. Xu, W. Huang , Q. Shi, Y. Zhang, J. Wu, L. Song, Shape-dependent thermochromic phenomenon in porous nano-structured VO2 films, Materials Research Bulletin. Vol.48, Iss.10, (2013) 4146-4149.
 
[29]  M. Pan, S. Wang, J. Liu, Z. Li, X.Chen, al, Properties of VO2 thin film prepared with precursor VO2 J. Cryst. Growth. 265 (2004) 121.
 
[30]  B. D. Ngom, M. Chaker, A. Diallo, I. G. Madiba, S. Khamlich, N. Manyala, O. Nemraoui, R. Madjoe, A.C. Beye, M. Maaza, Competitive growth texture of pulsed laser deposited vanadium dioxide nanostructures on a glass substrate, Acta Materialia. 65 (2014) 32-41.
 
[31]  J. Y. Suh, R. Lopez, L. C. Feldman and R. F. Haglund Jr. “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films”, Journal of Applied Physics, 96, 1209 (2004).
 
[32]  S. Lysenko, A.J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, H. Liu, Light-induced ultrafast phase transitions in VO2thin film, Appl. Surf. Sci. 252 (2006) 5512-5515.
 
[33]  M. Maaza, N. Ouassini, C. Sella, A.C. Beye, Surface plasmon resonance tunabilityin Au-VO2 thermochromic nano-composites, Gold Bull. 38 (3) (2005)100.
 
[34]  J. B. Goodenough, The two components of the crystallographic transition in VO2. Journal of Solid State Chemistry (3), (1971) 490-500.
 
[35]  V. A. Klimov, I. O. Timofeeva, S. D. Khanin, E. B. Shadrin, A. V. Ilinskii, F. Silva-Andrade, Hysteresis loop construction for the metal-semiconductor phase transition in vanadium dioxide films. Technical Physics 47, (2002) 1134-1139.