American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2016, 4(3), 58-62
DOI: 10.12691/ajn-4-3-2
Open AccessArticle

Modeling of the Scattering Process and the Optical Photo-generation Rate of a Dye Sensitized Solar Cell: Influence of the TiO2 Radius

E. H. O. Gueye1, P. D. Tall1, O. Sakho1, C. B. Ndao1, M. B. Gaye1, N. M. Ndiaye1, B. D. Ngom1, and A.C. Beye1

1Groupe de physique du Solide et Sciences des Matériaux, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann Dakar (Sénégal)

Pub. Date: November 16, 2016

Cite this paper:
E. H. O. Gueye, P. D. Tall, O. Sakho, C. B. Ndao, M. B. Gaye, N. M. Ndiaye, B. D. Ngom and A.C. Beye. Modeling of the Scattering Process and the Optical Photo-generation Rate of a Dye Sensitized Solar Cell: Influence of the TiO2 Radius. American Journal of Nanomaterials. 2016; 4(3):58-62. doi: 10.12691/ajn-4-3-2

Abstract

We report on a methodology for optical and electrical modeling of dye-sensitized solar cells (DSSCs). In order to take into account the scattering process, the optical model is based on the determination of the effective permittivity of the mixture and the scattering coefficient using Mie and Bruggeman theories, considering spherical particles. Then, from the radiative transfer equation, the optical generation rate of cell is deduced. From the presented model, the dependence effects of the nanoparticles size upon the extinction coefficient and the optical generation rate are evidenced. Thus, we noticed that the extinction coefficient decreases with the increase of the TiO2 nanoparticles and vanishes when the wavelengths increases in the visible spectrum. A significant uniformity of the absorption for radius smaller than 10 nm is observed, however at a radius about 80 nm, we observe a non-uniformity. The simulated results based on this model are in good agreement with the experimental results.

Keywords:
dye-sensitized solar cell mie theory scattering parameters

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  O’Regan, B., Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353-737, 1991.
 
[2]  Wang, Q., Ito, S., Gratzel, M., Fabregat-Santiago, F., Mora-Sero, I., Bisquert, J., Bessho, T., and Imai, H., “Characteristics of High Efficiency Dye-Sensitized Solar Cells,” J. Phys. Chem. B 110, 25210-25221, 2006.
 
[3]  Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Tavernelli, I., Rothlisberger, U., Nazeeruddin M.K., and Grätzel, M., “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nature Chemistry 6, 242-247, 2014.
 
[4]  Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., “Solar cell efficiency tables (Version 45),” Progress in photovoltaics: research and applications, 23(1), 1-9, 2015.
 
[5]  Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L., J. Appl. Phys., Part 2, 45, L638-L640, 2006.
 
[6]  Gao, F.; Wang, Y., Shi, D., Zhang, J., Wang, M. K., Jing, X. Y., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M., Grätzel, M., J. Am. Chem. Soc. 130, 10720-10728 ,2008.
 
[7]  Ferber, J., and Luther, J., “Computer simulations of light scattering and absorption in dye-sensitized solar cells.” Solar Energy Materials and Solar Cells 54 (1998)
 
[8]  Rothenberger, G., Comte, P., Gratzel, M., “A contribution to the optical design of dye_sensitized nanocrystalline solar cells,” Solar Energy Materials & Solar Cells, 58, 321-336, 1999.
 
[9]  Soedergren, S., Hagfeldt, A., Olsson, J., and Lindquist, S. E., “Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells,” The Journal of Physical Chemistry, 98(21), 5552-5556, 1994.
 
[10]  Matthews, D., Infelta, P., and Grätzel, M, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes.” Solar Energy Materials and Solar Cells, 44(2), 119-155, 1996.
 
[11]  Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998.
 
[12]  Usami, A., “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell,” Chemical Physics Letters, 277(1), 105-108, 1997.
 
[13]  Usami, A., “Theoretical study of charge transportation in dye-sensitized nanocrystalline TiO2 electrodes,” Chemical physics letters, 292(1), 223-228, 1998.
 
[14]  Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998.
 
[15]  Stangl, R., Ferber, J., & Luther, J., “On the modeling of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 54(1), 255-264, 1998.
 
[16]  Usami, A., & Ozaki, H., “Computer simulations of charge transport in dye-sensitized nanocrystalline photovoltaic cells,” The Journal of Physical Chemistry B, 105(20), 4577-4583, 2001.
 
[17]  Bisquert, J., Cahen, D., Hodes, G., Rühle, S., & Zaban, A., “Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells,” The Journal of Physical Chemistry B, 108(24), 8106-8118, 2004.
 
[18]  Filipič, M., Berginc, M., Smole, F., & Topič, M., “Analysis of electron recombination in dye-sensitized solar cell,” Current Applied Physics, 12(1), 238-246, 2012.
 
[19]  Wenger, S., Schmid, M., Rothenberger, G., Gentsch, A., Gratzel, M., and Schumacher, J. O., “Coupled Optical and Electronic Modeling of Dye-Sensitized Solar Cells for Steady-State Parameter Extraction,” J. Phys. Chem. C 115, 10218–10229, 2011.
 
[20]  Topič, M., Čampa, A., Filipič, M., Berginc, M., Krašovec, U. O., & Smole, F., “Optical and electrical modelling and characterization of dye-sensitized solar cells,” Current Applied Physics, 10(3), S425-S430, 2010.
 
[21]  Gueye, E.H.O., Tall, P. D., Ndao, C. B., Dioum, A., Dione, A. N., & Beye, A. C. (2016). An Optical and Electrical Modeling of Dye Sensitized Solar Cell: Influence of the Thickness of the Photoactive Layer. American Journal of Modeling and Optimization, 4(1), 13-18.
 
[22]  C. Rozé, T. Girasole, G. Gréhan, G.Gouesbet, B.Maheu. Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters. Optics communications 194. (2001). 251-263.
 
[23]  G. Kortum, Reflectance Spectroscopy, Springer, Berlin, 1969.
 
[24]  B. Maheu, J. N. Letoulouzan and G. Gouesbet. Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters. Applied Optics Vol. 23, No. 19 (1984).
 
[25]  A. Dioum, S. Ndiaye, E. H. O. Gueye, M. B. Gaye, D. N. Faye, O. Sakho, M. Faye and A. C. Beye. 3-D Modeling of bilayer heterojunction organic solar cell based on Copper Phthalocyanine and Fullerene (CuPc/C60): evidence of total excitons dissociation at the donor-acceptor interface. Global Journal of Pure and Applied Sciences, Vol 19 (2013).