American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2016, 4(2), 44-51
DOI: 10.12691/ajn-4-2-3
Open AccessArticle

Preparation of Vaterite Calcium Carbonate in the Form of Spherical Nano-size Particles with the Aid of Polycarboxylate Superplasticizer as a Capping Agent

Mohamed El-Shahate Ismaiel Saraya1, and Hanaa Hassan Abdel Latif Rokbaa2

1Department of Chemistry, Faculty of Science, Al-Azhar University, Nassr City, P.O. 11884, Cairo, Egypt

2Department of Chemistry, Faculty of Science, Halwan University, Halwan, Cairo, Egypt

Pub. Date: September 02, 2016

Cite this paper:
Mohamed El-Shahate Ismaiel Saraya and Hanaa Hassan Abdel Latif Rokbaa. Preparation of Vaterite Calcium Carbonate in the Form of Spherical Nano-size Particles with the Aid of Polycarboxylate Superplasticizer as a Capping Agent. American Journal of Nanomaterials. 2016; 4(2):44-51. doi: 10.12691/ajn-4-2-3

Abstract

Vaterite is an important biomedical material due to its properties such as high specific surface area, high solubility, high dispersion, and small specific gravity. In this study, spherical vaterite composed of nanoparticles are synthesized by precipitation route assisted by Polycarboxylate superplasticizer (PSS). The calcium carbonate was prepared by reacting a mixed solution of Na2CO3 with a CaCl2 solution at an ambient temperature, 25 °C, in the presence of polycarboxylate superplasticizer as a stabilizer. The effects of PSS on the morphology and polymorph of precipitated CaCO3 are investigated with the help of Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and X-ray diffraction (XRD) and Transmission electron microscopy (TEM). It is supposed that the core-shell structured microspheres with the nanoparticles are attributed to the adsorption of PSS on the faces of calcium carbonate crystals. The results revealed that polycarboxylate superplasticizer can use in preparation of vaterite calcium carbonate from aqueous solutions. The prepared vaterite calcium carbonate has nanoparticles with the average particle size ranging from 15 to 26 nm as estimated using TEM.

Keywords:
calcium carbonate polycarboxylate vaterite Nanoparticles SEM TEM

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  J.H. Bang, Y.N. Jang, K.S. Song, C.W. Jeon, W. Kim, M.G. Lee, S.J. Park, Effects of sodium lauryl sulfate on crystal structure of calcite formed from mixed solutions, Journal of Colloid Interface Science 356 (2011) 311.
 
[2]  I. Udrea, C. Capat, E.A. Olaru, R. Isopescu, M. Mihai, C.D. Mateescu, C. Bradu, Vaterite synthesis via gas–liquid route under controlled pH, conditions, Industrial and Engineering Chemistry Research 51 (2012) 8185-8193.
 
[3]  S. Yamanaka, N. Ito, K. Akiyama, A. Shimosaka, Y. Shirakawa, J. Hidaka, Heterogeneous nucleation and growth mechanism on hydrophilic and hydrophobic surface, Advanced Powder Technology 23 (2012) 268-272.
 
[4]  G.J. Price, M.F. Mahon, J. Shannon, C. Cooper, Composition of calcium carbonate polymorphs precipitated using ultrasound, Crystal Growth and Design 11 (2011) 39-44.
 
[5]  H. Wang, W. Huang, Y. Han, Diffusion-reaction compromises the polymorphs of precipitated calcium carbonate, Particuology 11 (2013) 301-308.
 
[6]  Y. Fukui, K. Fujimoto, Bio-inspired nanoreactor based on miniemulsion system to create organic-inorganic hybrid nanoparticle and nanofilm, Journal of Material Chemistry 22(2012) 3493-3499.
 
[7]  Y. Zhao, W. Du, L. Sun, L. Yu, J. Jiao, R. Wang, Facile synthesis of calcium carbonate with an absolutely pure crystal form using 1-butyl-3-methylimidazolium dodecyl sulfate as the modifier, Colloid and Polymer Science 291(2013) 2191-2202.
 
[8]  Y. Lai, L. Chen, W. Bao, Y. Ren,, Y. Gao,, Y. Yin,, Y. Zhao, Glycine-Mediated, Selective Preparation of Monodisperse Spherical Vaterite Calcium Carbonate in Various Reaction Systems, Crystal Growth & Design, 15(3)(2015) 1194-1200.
 
[9]  D. B. Trushina, T. V. Bukreeva, M. N. Antipina, Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles, Crystal Growth & Design, 16(3) (2016) 1311-1319.‏
 
[10]  A. Islam, S. H. Teo, M. A. Rahman, Y. H Taufiq-Yap, Seeded Growth Route to Noble Calcium Carbonate Nanocrystal, PloS one, 10(12)(2015)0144805.‏
 
[11]  R. Na, H. B. Atchudan, I. W. Cheong, J. Joo, Facile Synthesis of Monodispersed Cubic and Spherical Calcite Nanoparticles in the Presence of Cetyltrimethylammonium Bromide, Journal of nanoscience and nanotechnology, 15(4)(2015) 2702-2714.‏
 
[12]  K., Hiyama, T., Nagai, A., K. Yamashita, Controlled calcite nucleation on polarized calcite single crystal substrates in the presence of polyacrylic acid, Journal of Crystal Growth, 415(2015).7-14.
 
[13]  B.P. Bastakoti, S. Guragain, Y. Yokoyama, S. I. Yusa, K. Nakashima, Synthesis of hollow CaCO3 nanospheres templated by micelles of poly(styrene-b-acrylic acid-b-ethylene glycol) in aqueous solutions, Langmuir 27 (2011) 379-384.
 
[14]  T. J. Lee, S. J. Hong,, J. Y. Park,, H. J. Kim, Effects of Anionic Polyacrylamide on Carbonation for the Crystallization of Precipitated Calcium Carbonate, Crystal Growth & Design, 15(4), (2015).1652-1657.‏
 
[15]  S. El-Sherbiny, S. M. El-Sheikh, A. Barhoum, Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application, Powder Technology, 279 (2015) 290-300.‏
 
[16]  J. Jiang, D. Xu, Y. Zhang, S. Zhu, X. Gan, J. Liu, From nano-cubic particle to micro-spindle aggregation: The control of long chain fatty acid on the morphology of calcium carbonate, Powder Technology, 270 (2015). 387-392.‏
 
[17]  H.V. Tran, L.D. Tran, H.D. Vu, H. Thai, Facile surface modification of nanoprecipitated calcium carbonate by adsorption of sodium stearate in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects 366 (2010) 95-103.
 
[18]  K. Fuchigami, Y. Taguchi, M. Tanaka, Synthesis of calcium carbonate vaterite crystals and their effect on stabilization of suspension polymerization of MMA, Advanced Powder Technology 20(2009) 74-79.
 
[19]  E. Y. Zeynep, D. Antoine, C. Brice, B. Frank, J. Christine, Double hydrophilic polyphosphoester containing copolymers as efficient templating agents for calcium carbonate microparticles, Journal of Materials Chemistry B, 3(36)(2015) 7227-7236.
 
[20]  X.D. Yang, G.Y. Xu, Y.J. Chen, F. Wang, H.Z. Mao, W.P. Sui, Y. Bai, H.J. Gong, CaCO3 crystallization control by poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer and O-(hydroxy isopropyl) chitosan, Journal of Crystal Growth 311 (2009) 4558-4569.
 
[21]  M. Euvrard, A. Martinod, A. Neville, Effects of carboxylic polyelectrolytes on the growth of calcium carbonate, Journal of Crystal Growth 317 (2011) 70-78.
 
[22]  R.A., Akbour, K. Jradi, A. Jada, Crystalline Structure, Shape and Size Modifications of CaCO3 Particles by Polyelectrolytes, Journal of Colloid Science and Biotechnology, 3(1) (2014) 38-45.‏
 
[23]  M. Yang, X. Jin, Q. Huang, Facile synthesis of vaterite core-shell microspheres, Colloids and Surfaces A: Physicochemical and Engineering Aspects 374 (2011) 102-107.
 
[24]  Z. Chen, S. Xiao, F. Chen, D. Chen, J. Fang, M. Zhao, Calcium carbonate phase transformations during the carbonation reaction of calcium heavy alkylbenzene sulfonate over based nano detergents preparation, Journal of colloid and interface science 359 (2011). 56-67.
 
[25]  J. Ihli, Y.Y. Kim, E.H. Noel, F.C. Meldrum, The effect of additives on amorphous calcium carbonate (acc): janus behavior in solution and the solid state, Advanced Functional Materials, 23(2013) 1575-1585.
 
[26]  T. Wang, B.X. Leng, R.C. Che, Z.Z. Shao, Biomimetic synthesis of multilayered aragonite aggregates using alginate as crystal growth modifier, Langmuir 26(2010) 13385-13392.
 
[27]  A. Rao, P. Vásquez-Quitral, M. S. Fernández, J. K. Berg, M. Sánchez, M. Drechsler, H. Cölfen, pH-dependent schemes of calcium carbonate formation in the presence of alginates, Crystal Growth & Design, 16(3)(2016). 1349-1359.‏
 
[28]  M.Ø.Olderøy, M. Xie, B. L. Strand, K. I. Draget, P. Sikorski, J. P. Andreassen, Polymorph switching in the calcium carbonate system by well-defined alginate oligomers, Crystal Growth and Design 11(2011) 520-529.
 
[29]  S. Kirboga, M. Öner, Application of experimental design for the precipitation of calcium carbonate in the presence of biopolymer, Powder Technology, 249 (2013) 95-104.
 
[30]  Z. Zhang, Y. Xie, X. Xu, H. Pan, R. Tang, Transformation of amorphous calcium carbonate into aragonite, Journal of Crystal Growth 343(2012) 62-67.
 
[31]  S. Bai, G. Naren, M. Nakano, Y. Okaue, T. Yokoyama, Effect of polysilicic acid on the precipitation of calcium carbonate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445 (2014)54-58.
 
[32]  W. Ye, L. Zhang, G. Feng, J.Ye, C. Li, Preparation of Calcium Carbonate and Methyl Methacrylate Nanoparticles by Seeded-Dispersion Polymerization for High Performance Polyvinyl Chloride Nanocomposites, Industrial & Engineering Chemistry Research, 54(30) (2015) 7459-7464.‏
 
[33]  G. X.Wu, J. Ding, J.M. Xue, Synthesis of calcium carbonate capsules in water-in-oil-in-water double emulsions, Journal of Materials Research, 23(2008)140-149.
 
[34]  A. Georgieva, B. Georgieva, Z. Bogdanov, and D. K. Stefanov, Microemulsion water-in-oil (W/O)—microreactor for synthesis of ultrafine carbonate nanostructures, University of Ruse Union of Scientists-Ruse 50 (2011)34-38.
 
[35]  Y. Kojima, K. Yamaguchi, N. Nishimiya, Effect of amplitude and frequency of ultrasonic irradiation on morphological characteristics control of calcium carbonate, Ultrasonics sonochemistry 17(2010) 617-620.
 
[36]  Y. Kojima, M. Kanai, N. Nishimiya, Synthesis of novel amorphous calcium carbonate by sono atomization for reactive mixing, Ultrasonics sonochemistry 19 (2012) 325-329.
 
[37]  Z. Jia, Q. Chang, J. Qin, A. Mamat, Preparation of Calcium Carbonate Nanoparticles with a Continuous Gas-liquid Membrane Contactor: Particles Morphology and Membrane Fouling, Chinese Journal of Chemical Engineering 21(2013) 121-126.
 
[38]  J. Chen, L. Xiang, Controllable synthesis of calcium carbonate polymorphs at different temperatures, Powder Technology 189 (2009) 64-69.
 
[39]  Y. Wang, Y.X. Moo, C. Chen, P. Gunawan, R. Xu, Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres, Journal of Colloid and Interface Science 352 (2010) 393-400.
 
[40]  X.L. Chen, Y.H. Fang, Z.D. Lan, Z.J. Jiang, Y. Ke, M. Q. Guan, Synthesis and Performance Research of Ester Polycarboxylate Superplasticizer, Applied Mechanics and Materials 204 (2012) 4147-4150.
 
[41]  Y.H. Fang, Z.J. Jiang, Y.L. Ke, X.L. Chen, F.L. Zheng, Z.D. Lan, M.M. Gui, Synthesis and Characterization of Comb-Like Polycarboxylate Superplasticizer, Applied Mechanics and Materials 204 (2012) 3881-3885.
 
[42]  S. H. Zou, W. B. Duan, X. Wang, Z. L. Gao, , B. Liu, Synthesis and Effect of Polycarboxylate Superplasticizer with Two Different Molecular Polyethers as Side Chain, Applied Mechanics and Materials, 217 (2012) 578-581.
 
[43]  K. Zhou, J. Liu, Z. Li, Synthesis of A Novel Polycarboxylate Superplasticizer with High Performance, Asian Journal of Chemistry 23(2011) 2276-2280.
 
[44]  J. Zhu, G. Zhang, Z. Miao, T. Shang, Synthesis and performance of a comblike amphoteric polycarboxylate dispersant for coal–water slurry, Colloids and Surfaces A: Physicochemical and Engineering Aspects 412 (2012)101-107.
 
[45]  Z. Shen, J. Li, K. Xu, L. Ding, H. Ren, The effect of synthesized hydrolyzed polymaleic anhydride (HPMA) on the crystal of calcium carbonate, Desalination 284 (2012) 238-244.
 
[46]  H. Bala, W. Fu, Y. Guo, J. Zhao, Y. Jiang, X. Ding, Z. Wang, In situ preparation and surface modification of barium sulfate nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 274 (2006) 71-76.
 
[47]  C.G. Kontoyannis, N. V. Vagenas, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst 125 (2000)) 251-255.
 
[48]  A. Sarkar, S. Mahapatra, Synthesis of all crystalline phases of anhydrous calcium carbonate, Crystal Growth Design 10 (2010) 2129-2135.
 
[49]  M.M.M.G.P.G. Mantilakaa, b, R.M.G. Rajapaksea, D.G.G.P. Karunaratnec, H.M.T.G.A. Pitawala, Preparation of amorphous calcium carbonate nanoparticles from impure dolomitic marble with the aid of poly (acrylic acid) as a stabilizer, Advanced Powder Technology 25(2014), 591-598.
 
[50]  C.Y. Tai, C. Chen, Particle morphology, habit, and size control of using reverse microemulsion technique, Chemical Engineering Science 63 (2008) 3632-3642.
 
[51]  E. Loste, R.M.Wilson, R. Seshadri, F.C. Meldrum, The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies, Journal of Crystal Growth 254 (2003) 206-218.
 
[52]  Y. Shen, A. Xie, Z. Chen, W. Xu, H. Yao, S. Li, L. Huang, Z. Wu, X. Kong, Controlled synthesis of calcium carbonate nanocrystals with multi-morphologies in different bicontinuous microemulsions, Materials Science and Engineering A 443 (2007) 95-100.
 
[53]  D.L. Tran, V.H. Tran, T.Q. Duong, J.S. Kim, Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites, Materials Science and Engineering A 501 (2009) 87-93.
 
[54]  C.Y. Tai, W.C. Chien, C.Y. Chen, Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer, AIChE Journal 45 (1999) 1605-1614.
 
[55]  G.T. Zhou, Q.Z. Yao, J. Ni, G. Jin, Formation of aragonite mesocrystals and implication for biomineralization, American Mineralogist 94 (2009) 293-302.
 
[56]  Y.S. Han, G. Hadiko, M. Fuji, M. Takahashi, Factors affecting the phase and morphology of CaCO3 prepared by a bubbling method, Journal of the European Ceramic Society 26 (2006) 843-847.
 
[57]  J.D. Rodriguez-Blanco, S. Shaw, L.G. Benning, The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, Nanoscale 3 (2011) 265-271.
 
[58]  Y.S. Han, G. Hadiko, M. Fuji, M. Takahashi, Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method, Journal of Crystal Growth 276 (2005) 541-548.
 
[59]  S. Huang, K. Naka, Y. Chujo, A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s, Langmuir 23 (2007) 12086–12095.
 
[60]  I. Polowczyk, A. Bastrzyk, T. Kozlecki, Z. Sadowski, Calcium carbonate mineralization. Part 1: the effect of poly (ethylene glycol) concentration on the formation of precipitate, Physicochemical Problems of Mineral Processing 49 (2013) 631-639.
 
[61]  W. Li, L. Liu, W. Chen, L. Yu, W. Li, H. Yu, Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors, Process Biochemistry 45(-010)1017–1021.
 
[62]  H. ei, Q. Shen, Y. Zhao, D.J. Wang, D.F. Xu, Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite, Journal Crystal Growth 250 (2003) 516-524.
 
[63]  Q. Shen, Y.K. Chen, H. Wei, Y. Zhao, D.J. Wang, D.F. Xu, Suspension effect of poly(styrene-ran-methacrylic acid) latex particles on crystal growth of calcium carbonate, Crystal Growth Design 5 (2005) 1387-1391.
 
[64]  H. Wei, Q. Shen, H.H. Wang, Y.Y. Gao, Y. Zhao, D.F. Xu, D.J. Wang, Influence of segmented copolymers on the crystallization and aggregation of calcium carbonate, Journal Crystal Growth 303 (2007) 537-545.
 
[65]  H. Colfen, Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers, Macromolecular Rapid Communications 22 (2001) 219-252.
 
[66]  S.H. Yu, H. Colfen, J. Hartmann, M. Antonietti, Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers, Advanced Functional Material 12 (2002) 541-545.
 
[67]  A. Jada, R. Ait Akbour, C. Jacquement, J.M. Suau, O. Guerret, Effect of sodium polyacrylate molecular weight on the crystallogenesis of calcium carbonate, Journal Crystal Growth 306 (2007) 373-382.
 
[68]  S. Ouhenia, D. Chateigner, M.A. Belkhir, E. Guilmeau, C. Krauss, Synthesis of calcium carbonate polymorphs in the presence of polyacrylic acid, Journal of Crystal Growth 310 (2008) 2832-2841.
 
[69]  L.H. He, R. Xue, R. Song, Formation of calcium carbonate films on chitosan substrates in the presence of polyacrylic acid, Journal of Solid State Chemistry 182 (2009)1082-1087.