American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2023, 11(1), 51-60
DOI: 10.12691/ajn-11-1-4
Open AccessArticle

Review of Recent Advances of ZnO Nanowires Based Sensors Devices

M. Alzubaidi1 and Y. Saleh Ahmed M. Nahhas1,

1Department of Electrical Engineering, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

Pub. Date: February 15, 2023

Cite this paper:
M. Alzubaidi and Y. Saleh Ahmed M. Nahhas. Review of Recent Advances of ZnO Nanowires Based Sensors Devices. American Journal of Nanomaterials. 2023; 11(1):51-60. doi: 10.12691/ajn-11-1-4

Abstract

This paper presents the recent advances of ZnO Nanowires Based Sensors Devices. ZnO, an n-type, direct metal oxide semiconductor with a broad band gap, is projected to be the next generation functional nanomaterial for a wide range of sensing applications. Due to their exceptional optoelectronic, physicochemical, and electrical properties, such as low dielectric constant, abundant Zn-O bonds, high luminous transmittance, good physicochemical stability, enormous excitation binding energy, non-toxicity, biocompatibility, large surface area to volume ratio, and others, ZnO and its composites have opened a new era in the fabrication of sensors. The uses of ZnO nanostructures in the fields of environmental monitoring, biomedicine, and optical sensing are outlined in this thorough overview. To gain a better understanding of the function of ZnO in each of these sensors, fundamental sensing mechanisms of ZnO based sensors are explored. Limitations of the current methodologies and the forecast for the future have also been discussed.

Keywords:
Zinc Oxide (ZnO) Nanostructured Doping Nanostructure LEDs Nanowires UV Sensors Nanoparticles (NPs)

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Nahhas, A. M. “Recent Advances of ZnO Based Nanowires and Nanorods Devices,” American Journal of Nanomaterials, 6. 15-23, 2018.
 
[2]  Nahhas, A. M. “ A Review of Zinc-Oxide as Nano Materials and Devices,” International Journal on Recent Trends in Engineering & Technology, 9. 135, 2013.
 
[3]  Nahhas, A. M., Kim, H., Blachere, J. “ Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer,” Applied Physics Letters, 78. 1511-1513, 2001.
 
[4]  Tvarozek, V., Shtereva, K., Novotny, I., Kovac, J., Sutta, P., Srnanek, R., Vincze, A. “RF diode reactive sputtering of n- and p-type zinc oxide thin films,” Vacuum, 82. 166-169, 2007.
 
[5]  Wang, Y., Chen, Y., Song, X., Zhang, Z., She, J., Deng, S., Xu, N., Chen, J. “Electrical properties of fluorine-doped ZnO nanowires formed by biased plasma treatment,” Physica E: Low-dimensional Systems and Nanostructures, 99. 254-260, 2018.
 
[6]  Tvarozek, V., Shtereva, K., Novotny, I., Kovac, J., Sutta, P., Srnanek, R., Vincze, A. “RF diode reactive sputtering of n- and p-type zinc oxide thin films,” Vacuum, 82. 166-169, 2007.
 
[7]  Liu, G., Rahman, E., Ban, D. “Performance optimization of p-n homojunction nanowire based piezoelectric nanogenerators through control of doping concentration,” Journal of Applied Physics, 118. 094307, 2017.
 
[8]  Nahhas, A. M. “Review of GaN/ZnO Hybrid Structures Based Materials and Devices,” American Journal of Nano Research and Applications, 6. 34-53, 2019.
 
[9]  Pemmaraju, C., Archer, T., Hanafin, R., Sanvito, S. “Investigation of n-type donor defects in Co-doped ZnO,” Journal of Magnetism and Magnetic Materials, 316. e185-e187, 2007.
 
[10]  Saroj, R. “Relationship between dislocation and the visible luminescence band observed in ZnO epitaxial layers grown on c-plane p-GaN templates by chemical vapor deposition technique,” Journal of Applied Physics, 120. 075701, 2016.
 
[11]  Urgessa, N., Dobson, S., Talla, K., Murape, D., Venter, A., Botha, J. “Optical and electrical characteristics of ZnO/Si heterojunction,” Physica B, Condensed Matter, 439. 149-152, 2014.
 
[12]  Alivov, R., Kalinina, E., Cherenkov, A., Look, D., Ataev, B., Omaev, A., Chukichev, M., Bagnall, D. “Fabrication and characterization of n-ZnO/p-AlGaN n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates,” Applied Physics Letters, 83. 4719, 2003.
 
[13]  Asif, M., Ali, S., Nur, O., Willander, M., Brannmark, C., Stralfors, P., Englund, U., Elinder, F., Danielsson, B. “Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose,” Biosens. Bioelectron. 25, 2205-2211, 2010.
 
[14]  Asif, M., Fulati, A., Nur, O., Willander, M., Brannmark, C., Stralfors, P., Borjesson, S., Elinder, F. “Functionalized zinc oxide nanorod with ionophore-membrane coating as an intracellular Ca2+ selective sensor,” Appl. Phys. Lett, 95, 023703-023705, 2009.
 
[15]  Fulati, A., Ali, S., Asif, M., Alvi, N., Willander, M., Brannmark, C., Stralfors, P., Borjesson, S. I., Elinder, F., Danielsson, B. “An intracellular glucose biosensor based on nanoflake ZnO,” Sens. Actuators B, 150, 673-680, 2010.
 
[16]  Wang, Z. “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng., 64, 33-71, 2009.
 
[17]  Kim, G., Muster, J., Krstic, V., Park, J., Park, Y., Roth, S., Burghard, M. “Field-effect transistor made of individual V2O5 nanofibers,” Appl. Phys. Lett, 76, 1875-1877, 2000.
 
[18]  Stone, N., Ahmed, H. “Silicon single electron memory cell,” Appl. Phys. Lett., 73, 2134-2136, 1998.
 
[19]  Cui, Y., Wei, Q., Park, H., Lieber, C. M. “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, 293, 1289-1292, 2001.
 
[20]  Huang, M., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P. “Room-temperature ultraviolet nanowire nanolasers,” Science, 292, 1897-1899, 2001.
 
[21]  Li, Q., Gao, T., Wang, Y., Wang, T. “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Appl. Phys. Lett, 86, 123117-123119, 2005.
 
[22]  Asif, M., Ali, S., Nur, O., Willander, M., Brannmark, C., Stralfors, P., Englund, U., Elinder, F., Danielsson, B. “Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose,” Biosens. Bioelectron, 25, 2205-2211, 2010.
 
[23]  Asif, M., Fulati, A., Nur, O., Willander, M., Brannmark, C., Stralfors, P., Borjesson, S., Elinder, F. “Functionalized zinc oxide nanorod with ionophore-membrane coating as an intracellular Ca2+ selective sensor,” Appl. Phys. Lett, 95, 023703-023705, 2009.
 
[24]  Asif, M., Willander, M., Stralfors, P., Danielsson, B. “Zinc Oxide Nanorods and Their Application to Intracellular Glucose Measurements,” Chapter 7: Nanotechnology and Nanomedicine in Diabetes, Le, L. A., Hunter, R., Victor, R., Eds., Preedy Science Publishers, CRC: London, UK, pp. 120-140, 2012.
 
[25]  Frausto da Silva, J., Williams, R. “The Biological Chemistry of the Elements,” 2nd Ed., Oxford University Press: Oxford, UK, 2001.
 
[26]  Elinder, F., Arhem, P. “Metal ion effects on ion channel gating,” Q. Rev. Biophys, 36, 373-427, 2003.
 
[27]  Asif, M., Nur, O., Willander, M., Yakovleva, M., Danielsson, B. “Studies on calcium ion selectivity of ZnO nanowire sensors using ionophore membrane coatings.” Res. Lett. Nanotechnol, 1-4, 2008.
 
[28]  Al-Hilli, S., Willander, M., Ost, A. “Stralfors, P. ZnO nanorods as an intracellular sensor for pH measurements.” J. Appl. Phys, 102, 084304-084305, 2007.
 
[29]  Hille, B. ”Ion Channel of Excitable Membranes,” 3rd ed., Sinauer Associates : Sunderland, MA, USA, 2001.
 
[30]  McDonough, A. A. ”Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure.” Am. J. Physiol. Regul. Integr. Comp. Physiol, 298, R851-R861, 2010.
 
[31]  Hodgkin, A.L., Katz, B. ”The effect of sodium ions on the electrical activity of the giant axon of the squid.” J. Physiol, 108, 37-77, 1949.
 
[32]  Cline, G. W., Jucker, B. M., Trajanoski, Z., Rennings, A. J. M., Shulman, G. I. ”A novel 13C NMR method to assess intracellular glucose concentration in muscle,” Am. J. Physiol, 274. 381-389, 1998.
 
[33]  Yamada, K., Nakata, M., Horimoto, N., Saito, M., Matsuoka, H., Inagaki, N. ”Measurement of glucosdes uptake and intracellular calcium concentration in single, living pancreatic β-cells.” J. Biol. Chem, 275, 22278-22283, 2000.
 
[34]  Asif, M., Ali, S. M., Nur, O., Willander, M., Englund, U., Elinder, F. ”Functionalized ZnO nanorod-based selective magnesium ion sensor for intracellular measurements. ” Biosens. Bioelectron, 26, 1118-1123, 2010.
 
[35]  Asif, M., Nur, O., Willander, M., Stralfors, P., Brannmark, C., Elinder, F., Englund, U., Lu, J., Hultman, L. ”Growth and Structure of ZnO Nanorods on a Sub-Micrometer Glass Pipette and Their Application as Intracellular Potentiometric Selective Ion Sensors,” Materials, 3 (9), 4657-4667 4657-4667, 2010.
 
[36]  Asif, M. H., Ali, M. U., Nur, O., Willander, M., Brannmark, C., Stralfors, P., Englund, U.H., Elinder, F., Danielsson, B. “Functionalised ZnO-Nanorod-Based Selective Electrochemical Sensor for Intracellular Glucose.” Biosensors and Bioelectronics, 25, 2205-2211, 2010.
 
[37]  Janicot, M., Lane, M. D. ”Activation of glucose uptake by insulin and insulinlike growth factor I in Xenopus oocytes.” Proc. Natl. Acad. Sci., 86, 2642-2646, 1989.
 
[38]  Zhu, L., Zeng, W.” Room-temperature gas sensing of ZnO-based gas sensor: a review,” Sens. Actuators A Phys. 267, 242-261, 2017.
 
[39]  Watson, J. “The tin oxide gas sensor and its applications,” Sens. Actuators 5, 29-42, 1984.
 
[40]  Zhu, L., Zeng, W. “Room-temperature gas sensing of ZnO-based gas sensor: a review,” Sens. Actuators A Phys. 267, 2017.
 
[41]  Jing, Z., Zhan, J. “Fabrication and gas-sensing properties of porous ZnO nanoplates,” Adv. Mater. 20, 2008.
 
[42]  Liu, C., Zhao, L., Wang, B., Sun, P., Wang, Q., Gao, Y., Liang, X., Zhang, T., Lu, G. “Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit,” J. Colloid Interface Sci. 495, 2017.
 
[43]  Sonker, R. K., Sabhajeet, S. R., Singh, S., Yadav, B. C. “Synthesis of ZnO nanopetals and their application as NO2 gas sensor,” Mater. Lett. 152, 2015.
 
[44]  Galstyan, V. “Quantum dots: perspectives in next-generation chemical gas sensors” ‒ a review,” Anal. Chim. Acta 1152, 2021.
 
[45]  Zhu, L., Li, Y., Zeng, W. “Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties,” Applied Surface Science, 427, 281-287, 2018.
 
[46]  Baruwati, B., Kumar, D. K. “Manorama, S.V.,” Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH,” Sens. Actuators B Chem. 119, 2006.
 
[47]  Rai, P., Yu, Y. T. “Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application,” Sens. Actuators B Chem. 173, 2012.
 
[48]  Sun, Y., Yang, H., Zhao, Z., Suematsu, K., Li, P., Yu, Z., Zhang, W., Hu, J. “Fabrication of ZnO quantum dots SnO2 hollow nanospheres hybrid hierarchical structures for effectively detecting formaldehyde,” Sens. Actuators B Chem. 318, 2020.
 
[49]  Ratan, S., Kumar, C., Kumar, A., Jarwal, D. K., Mishra, A. K., Upadhyay, R. K., Jit, S. “Fabrication and characterization of a ZnO quantum dots-based metal–semiconductor–metal sensor for hydrogen gas,” Nanotechnology 30, 2019.
 
[50]  Hu, X., Wang, M., Deng, J., Bakhtiar, H., Zheng, Z., Luo, W., Dong, W., Fu, Q. “Sensing properties and mechanism of gas sensors based on zinc oxide quantum dots,” IEEE Sens. J. 21, 2021.
 
[51]  Van Duy, L., Nguyet, T. T., Hung, C. M., Thanh Le, D. T., Van Duy, N., Hoa, N. D., Biasioli, F., Tonezzer, M., Di Natale, C. “Ultrasensitive NO2 gas sensing performance of two dimensional ZnO nanomaterials: nanosheets and nanoplates,” Ceram. Int. 47, 2021.
 
[52]  Park, Y., Yoo, R., Park, S., Lee, J. H., Jung, H., Lee, H. S., Lee, W. “Highly sensitive and selective isoprene sensing performance of ZnO quantum dots for a breath analyzer,” Sens. Actuators B Chem. 290, 2019.
 
[53]  Song, Y., Chen, F., Zhang, Y., Zhang, S., Liu, F., Sun, P., Yan, X., Lu, G. “Fabrication of highly sensitive and selective room-temperature nitrogen dioxide sensors based on the ZnO nanoflowers,” Sens. Actuators B Chem. 287, 2019.
 
[54]  Niarchos, G., Dubourg, G., Afroudakis, G., Georgopoulos, M., Tsouti, V., Makarona, E., Crnojevic-Bengin, V., Tsamis, C. “Humidity sensing properties of paper substrates and their passivation with ZnO nanoparticles for sensor applications,” Sensors 17 516, 2017.
 
[55]  Rackauskas, S., Barbero, N., Barolo, C., Viscardi, G. “ZnO nanowire application in chemoresistive sensing: a review,” Nanomaterials 7 381, 2017.
 
[56]  Wei, A., Pan, L., Huang, W. “Recent progress in the ZnO nanostructure-based sensors,” Mater. Sci. Eng. B 176 1409-1421, 2011.
 
[57]  Li, Y., Jiao, M., Zhao, H., Yang, M. “High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties,” Sens. Actuators B Chem. 264, 285-295, 02.157, 2018.
 
[58]  Ryzhikov, A., Jonca, J., Kahn, M., Fajerwerg, K., Chaudret, B., Chapelle, A., Menini, P., Shim, C.H., Gaudon, A., Fau, P.” Organometallic synthesis of ZnO nanoparticles for gas sensing: towards selectivity through nanoparticles morphology,” J. Nanoparticle Res. 17.280, 2015.
 
[59]  Jaballah, S., Benamara, M, Dahman, H., Ly, A., Lahem, M. Debliquy, D., El Mir, L. “Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations,” Mater. Chem. Phys. 255. 123643, 2020.
 
[60]  Gidwani, B., Sahu, V., Shukla, S. S., Pandey, R., Joshi, V., Jain, V. K., Vyas, A. “Quantum dots: prospectives, toxicity, advances and applications,” J. Drug Deliv. Sci. Technol. 61, 102308, 2021.
 
[61]  Zhai, S., Karahan, H. E., Wang, C., Pei, Z., Wei, L., Chen, Y. ”1D supercapacitors for emerging electronics: current status and future directions,” Adv. Mater. 32 1902387, 2020.
 
[62]  Samadi, M., Zirak, M., Naseri, A., Kheirabadi, M., Ebrahimi, M., Moshfegh, A. Z. “Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review,” Res. Chem. Intermed. 45, 2197-2254, 2019.
 
[63]  He, Y., Matthews, B., Wang, J., Song, L. Wang, X., Wu, G. “Innovation and challenges in materials design for flexible rechargeable batteries: from 1D to 3D,” J. Mater. Chem. A 6, 735-753, 2018.
 
[64]  Yang, B., Myung, N.V., Tran, T. “1D metal oxide semiconductor materials for chemiresistive gas sensors: a review,” Adv. Electron. Mater. 7, 2100271, 2021.
 
[65]  Na, H. B., Zhang, X. F., Deng, Z. P., Xu, Y. M., Huo, L. H., Gao, S. “Large-scale synthesis of hierarchically porous ZnO hollow tubule for fast response to ppb-level H2S gas,” ACS Appl. Mater. Interfaces 11, 11627-11635, 2019.
 
[66]  Li, Y., Wang, S., Hao, P., Tian, J., Cui, H., Wang, X. “Soft-templated formation of double-shelled ZnO hollow microspheres for acetone gas sensing at low concentration/near room temperature,” Sens. Actuators B Chem. 273, 751-759, 2018.
 
[67]  Selvaraj, B., Rayappan, J. B., Babu, K. J.” Influence of calcination temperature on the growth of electrospun multi-junction ZnO nanowires: a room temperature ammonia sensor,” Mater. Sci. Semicond. Process. 112, 105006, 2020.
 
[68]  Du, H., Yang, W., Yi, W., Sun, Y., Yu, N., Wang, J. “Oxygen-plasma-assisted enhanced acetone-sensing properties of ZnO nanofibers by electrospinning,” ACS Appl. Mater. Interfaces 12, 23084-23093, 2020.
 
[69]  Li, Q., Chen, D., Miao, J., Lin, S., Yu, Z., Cui, D., Yang, Z., Chen, X. “Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application,” Sens. Actuators B Chem. 326, 128952, 2021.
 
[70]  Dral, A. P., Elshof, J. E. ”2D metal oxide nanoflakes for sensing applications: Review and perspective,” Sens. Actuators B Chem. 272, 369-392,2018.
 
[71]  Kumar, M., Bhatt, V., Kim, J. Abhyankar, A. C., Chung, H. J., Singh, K., Bin Cho, Y., Yun, Y. J., Lim, K. S., Yun, J. H. “Holey engineered 2D ZnO-nanosheets architecture for supersensitive ppm level H2 gas detection at room temperature,” Sens. Actuators B Chem. 326, 128839, 2021.
 
[72]  Kim, J. H., Mirzaei, A., Osada, M., Kim, H. W., Kim, S. S. “Hydrogen sensing characteristics of Pd-decorated ultrathin ZnO nanosheets,” Sens. Actuators B Chem. 329, 129222, 2021.
 
[73]  Wang, Y., Meng, X., Cao, J. “Rapid detection of low concentration CO using Pt- loaded ZnO nanosheets,” J. Hazard. Mater. 381, 120944, 2020.
 
[74]  Jiang, B., Lu, J., Han, Y., Sun, Y., Wang, Y., Cheng, P., Zhang, H., Wang, C., Lu, G. “Hierarchical mesoporous zinc oxide microspheres for ethanol gas sensor,” Sens. Actuators B Chem. 357, 131333, 2022.
 
[75]  Bruce, J., Bosnick, K., Heidari, E. “Pd-decorated ZnO nanoflowers as a promising gas sensor for the detection of meat spoilage,” Sens. Actuators B Chem. 355, 131316, 2022.
 
[76]  Wang, X., Ahmad, M., Sun, H. “Three-dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications,” Materials 10, 1304, 2017.
 
[77]  Agarwal, S., Rai, P., Gatell, E. N., Llobet, E., Guell, F., Kumar, M., Awasthi, K. “Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method,” Sens. Actuators B Chem. 292 24-31, 2019.
 
[78]  Zhang, S., Wang, C., Qu, F., Liu, S., Lin, C. T., Du, S., Chen, Y., Meng, F., Yang, M. “ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance,” Nanotechnology 31, 115502, 2020.
 
[79]  Umar, A., Akhtar, M. S., Algadi, H., Ibrahim, A. A., Alhamami, M. A. M., Baskoutas, S. “Highly sensitive and selective eco-toxic 4-nitrophenol chemical sensor based on Ag-doped ZnO nanoflowers decorated with nanosheets,” Molecules 26, 4619, 2021.
 
[80]  Jain, S., Karmakar, N., Shah, A., Kothari, D. C., Mishra, S., Shimpi, N. G. “Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: effect of CSA doping and their structural, chemical, thermal and gas sensing behavior,” Appl. Surf. Sci. 396, 1317-1325, 2017.
 
[81]  Chao, J., Chen, Y., Xing, S., Zhang, D., Shen, W. “Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor,” Sens. Actuators B Chem. 298, 126927, 2019.
 
[82]  Qomaruddin, O., Wasisto, H.S., Waag, A., Prades, J. D., Fabrega, C. “Visible-light-driven room temperature NO2 gas sensor based on localized surface plasmon resonance: the case of gold nanoparticle decorated zinc oxide nanorods,” Chemosensors 10, 28, 2022.
 
[83]  Hsu, L., Chen, C., Tsai, Y. Hsueh, J. “Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires,” Sens. Actuators B Chem. 182, 190-196, 2013.
 
[84]  Cho, S., Kim, D. H., Lee, B. S., Jung, J., Yu, W. R., Hong, S. H., Lee, S. “Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process,” Sens. Actuators B Chem. 162, 300-306, 2012.
 
[85]  Wang, L., Dou, H., Li, F., Deng, J., Lou, Z., Zhang, T. “Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres,” Sens. Actuators B Chem. 183, 467-473, 2013.