[1] | Nahhas, A. M., “A Review of GaN Nanowires Based Sensors,” American journal of nanomaterials. 6(1):1-14. (2018). |
|
[2] | Khan, A., Rao., M., Qiliang, L. “Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S”. Sensors.; 19: 905, (2019). |
|
[3] | Khan, M. “Gallium nitride (GaN) nanostructures and their gas sensing properties”: A review. Sensors. 20(14):3889, (2020). |
|
[4] | Sun, D., Priante, D., Min, W., Subedi, R., Shakfa, M., Ren, Z., Li, K., Lin, R., Zhao, C., Ng, T., et al. “Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation”. ACS Photonics, 5, 3305, (2018). |
|
[5] | Huo, Q., Shao, Y., Wu, Y., Zhang, B., Hu, H., Hao, X. “High quality self-separated GaN crystal grown on a novel nano porous template by HVPE”. Sci. Rep, 8, 3166, (2018). |
|
[6] | Li, P., Zhang, H., Li, H., Zhang, Y., Yao, Y., Palmquist, N., Iza, M., Speck, J., Nakamura, S., DenBaars, S. “Metalorganic chemical vapor deposition grown n-InGaN/n-GaN tunnel junctions for micro-light-emitting diodes with very low forward voltage”. Semicond. Sci. Technol. 35, 125023, (2020). |
|
[7] | Tsay, C., et al. “Improving the photoelectrical characteristics of self-powered p-GaN film/n-ZnO nanowires heterojunction ultraviolet photodetectors through gallium and indium co-doping.” Materials Science in Semiconductor Processing. 121: 105295, (2021). |
|
[8] | Liyanage, T., Ahmad, Q., Gymama, S. “Application of nanomaterials for chemical and biological sensors”: A review. IEEE Sensors Journal 21.11: 12407-12425, (2020). |
|
[9] | Terna, D., et al. “The future of semiconductors nanoparticles: Synthesis, properties and applications”. Materials Science and Engineering: B 272: 115363, (2021). |
|
[10] | Meneghini, M., et al. “GaN-based power devices: Physics, reliability, and perspectives”. Journal of Applied Physics 130.18: 181101, (2021). |
|
[11] | Roccaforte, F., Giannazzo, F., Greco, G. “Ion Implantation Doping in Silicon Carbide and Gallium Nitride Electronic Devices”. Micro.; 2(1): 23-53, (2022). |
|
[12] | Nozaki, M., Terashima, D., Yamada,T., Yoshigoe, A., Hosoi ,T., Shimura, T., et al. “Comparative study on thermal robustness of GaN and AlGaN/GaN MOS devices with thin oxide interlayers”. Japanese Journal of Applied Physics. 58(SC): SCCD08, (2019). |
|
[13] | Amano, H., et al. “The 2018 GaN power electronics roadmap”. Journal of Physics D: Applied Physics 51.16: 163001, (2018). |
|
[14] | Reshchikov, M., et al. “Stability of the CNHi Complex and the Blue Luminescence Band in GaN”. physica status solidi (b) 258.12: 2100392, (2021). |
|
[15] | Tsao, Y., et al. “Ultrawide-bandgap semiconductors: research opportunities and challenges”. Advanced Electronic Materials 4.1: 1600501, (2018). |
|
[16] | Sierakowski, K., et al. “High pressure processing of ion implanted GaN”. Electronics 9. 9: 1380, (2020). |
|
[17] | Lorenz, K. “Ion Implantation into Nonconventional GaN Structures”. Physics 4.2: 548-564, (2022). |
|
[18] | Uedono, A., et al. “Effect of Ultra-High-Pressure Annealing on Defect Reactions in Ion-Implanted GaN Studied by Positron Annihilation”. physica status solidi (b) 259.10: 2200183, (2022). |
|
[19] | Roccaforte, F., Filippo, G., Giuseppe, G. “Ion Implantation Doping in Silicon Carbide and Gallium Nitride Electronic Devices”. Micro. 2. 1. MDPI, (2022). |
|
[20] | Rebohle, L., et al. “Semiconductor Applications”. Flash Lamp Annealing: From Basics to Applications: 131-232, (2019). |
|
[21] | Hursan, D., Abel, M., Baan, K., Fako, E., Samu, G. F., Nguyen, H. C., et al. “CO2 Conversion on N-Doped Carbon Catalysts via Thermo- and Electrocatalysis: Role of C–NOx Moieties”. ACS Catal., 12(16):10127, (2022). |
|
[22] | Meneghini, M., De Santi, C., Abid, I., Buffolo, M., Cioni, M., Khadar, R. A., et al. “GaN-based power devices: Physics, reliability, and perspectives”. Journal of applied physics; 130(18):181101, (2021). |
|
[23] | Ramesh, C., Tyagi, P., Gautam, S., Ojha, S., Gupta, G., Senthil, M., Kushvaha., S. “Controlled growth of GaN nanorods directly on flexible Mo metal foil by laser molecular beam epitaxy”. Materials Science in Semiconductor Processing, 111, (2020). |
|
[24] | Rodriguez-Benitez, O., et al. “Comparative performance and assessment study of a current-fed dc-dc resonant converter combining si, sic, and GaN-based power semiconductor devices”. Electronics 9.11: 1982, (2020). |
|
[25] | Mohamed, A., Stroscio, M., Mitra, A., Junxia, D., Shi, L. “Transport in III-Nitride Devices Defense Committee”. (2019). |
|
[26] | Chunduri, K., Schmela., M. “Heterojunction solar technology”. Taiyang News, Munich, Germany, (2019). |
|
[27] | Liu, H., Yin, H., Yang, T., Ding, H., Dong, Y. “Electrogenerated chemiluminescence resonance energy transfer between ZnGa2O4/g-C3 N 4 and gold nanoparticles/graphene and its application in the detection of thrombin”. Analyst (London).; 145(22): 7412-20, (2020). |
|
[28] | Wang, Y., et al. “Comparative study on dynamic characteristics of GaN HEMT at 300 K and 150 K”. IEEE J. Electron Devices Soc, (2020). |
|
[29] | Gu, Y., Wang, Y., Chen, J., Chen, B., Wang, M., Zou, X. “Temperature-Dependent Dynamic Degradation of Carbon-Doped GaN HEMTs”. TED.; 68(7): 3290-5, (2021). |
|
[30] | Ren, Q., Wang, H., Lu, X., Tong, Y., Li, G. “Recent Progress on MOF-Derived Heteroatom-Doped Carbon-Based Electrocatalysts for Oxygen Reduction Reaction”. AdvancedScience; 5(3): 1700515, (2018). |
|
[31] | Zhang, Y., Chen, Z., Zhang, K., Feng, Zhao, H. “Laser-Assisted Metal–Organic Chemical Vapor Deposition of Gallium Nitride”. Phys Status Solidi RRL.; 15(6), (2021). |
|
[32] | You, S., Geens, K., Borga, M., Liang, H., Hahn, H., Fahle, D., et al. “Vertical GaN devices: Process and reliability. Microelectronics and reliability”. 126: 114218, (2021). |
|
[33] | Di Pede, E., Roland, M. “Preghiera e filiazione nel Vangelo di Luca (coll. Epifania della Parola. Testi ermeneutici, 12)”, Revue theologique de Louvain. 2012; 43(4): 587-8, (2010). |
|
[34] | Loeto, K. “Uncovering the carrier dynamics of AlInGaN semiconductors using time-resolved cathodoluminescence”. Materials science and technology. 38(12): 780-93, (2022). |
|
[35] | Gao, Y., Sun, D., Jiang, X., Zhao, J. “Point defects in group III nitrides: A comparative first-principles study”. Journal of applied physics. 125(21): 215705, (2019). |
|
[36] | Nahhas, A. M. “Review of GaN Nanowires Based Sensors. American journal of nanomaterials”. 8(1): 32-47, (2020). |
|
[37] | Zhang, M., Zhao, C., Gong, H., Niu, G., Wang, F. “Porous GaN Submicron Rods for Gas Sensor with High Sensitivity and Excellent Stability at High Temperature”. ACS Appl. Mater. Interfaces, 11, 33124-33131, (2019). |
|
[38] | Shi, C., Rani, A., Thomson, B., Debnath, R., Motayed, A., Yoannou, D.E., Li, Q. “High-performance room-temperature TiO2 -functionalized GaN nanowire gas sensors”. Appl. Phys. Lett. 115, 121602, (2019). |
|
[39] | Zhang, M., Zhao, C., Gong, H., Niu, G., Wang, F. “High Sensitivity Gas Sensor Based on Porous GaN Nanorods with Excellent High-Temperature Stability”. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, pp. 1369-1372, (2019). |
|
[40] | Gomes, B. A., Rodrigues, J., Rabelo, R., Kumar, N., Kozlov, S. “IoT-Enabled Gas Sensors: Technologies, Applications, and Opportunities”. JSAN, 8, 57, (2019). |
|
[41] | Khan, M., Thomson, B., Motayed, A., Li, Q., Rao, M. “Functionalization of GaN Nanowire Sensors with Metal Oxides: An Experimental and DFT Investigation”. IEEE Sens. J., 99, 1, (2020). |
|
[42] | Chen, F., Xiaohong, J., Shu, L. “Recent progress in group III-nitride nanostructures: From materials to applications”. Materials Science and Engineering: R: Reports 142: 100578, (2020). |
|
[43] | Mengwei, S., et al. “Characterization and simulation of 280 nm UV-LED degradation.” AIP Advances 11.3 (2021): 035315. Despaigne et al., “Full InGaN red light emitting diodes”, J. Appl. Phys., 128, (2020). |
|
[44] | Dussaigne, A., et al. “Full InGaN red (625 nm) micro-LED (10 μ m) demonstration on a relaxed pseudo-substrate”. Appl. Phys. Exp., 14, 9, (2021). |
|
[45] | Zhuang, Z., Iida D., Ohkawa, K. “Investigation of InGaN-based red/green micro-light-emitting diodes”, Opt. Lett., 46, 8, 1912-1915, (2021). |
|
[46] | Oh, J., et al. “Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures”, Opt. Exp., 26, 9, 11194-11200, (2018). |
|
[47] | Iida, D., Zhuang, Z., Kirilenko, P., Velazquez-Rizo M., Ohkawa, K. “Demonstration of low forward voltage InGaN-based red LEDs”, Appl. Phys. Exp., 13, 3, (2020). |
|
[48] | Iida, D., Zhuang, Z., Kirilenko, P., Velazquez-Rizo, M., Najmi M., Ohkawa, K. “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress”. Appl. Phys. Lett., 116, 16, (2020). |
|
[49] | Wang, X., Kumagai, N., Hao, G. “High-efficiency high-power AlGaInP thin-film LEDs with micron-sized truncated cones as light-extraction structures”. Phys. Status Solidi (A), 215, 6, (2018). |
|
[50] | Chen, S., et al. “Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer”, Photon. Res., 7, 4, 416-422, (2019). |
|
[51] | Smith, J., et al. “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μ m in diameter”, Appl. Phys. Lett., 116, 7, (2020). |
|
[52] | Guo, J., Ding, J., Mo, C., Zheng, C., Jiang, F. “Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate”. Chin. Phys. B, 29, 4, (2020). |
|
[53] | Pasayat, S., et al. “Demonstration ultra-small (<10 μ m) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays”. Appl. Phys. Exp., 14, (2021). |
|
[54] | Zhang, S., Zhang, J., Gao, X., Wang, C., Zheng, M., et al. “Efficient emission of InGaN-based light-emitting diodes: Toward orange and red”. Photon. Res., 8, 11, 1671-1675, (2020). |
|
[55] | Bai, J., et al. “Ultrasmall ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μ LEDs) with narrow spectral line width). ACS Nano, 14, 6, 6906-6911, (2020). |
|
[56] | Amador-Mendez, N. “Nanostructured III-nitride light emitting diodes. Micro and nanotechnologies/Microelectronics”. Universite Paris-Saclay, (2022). |
|
[57] | Li, P., et al. “Very high external quantum efficiency and wall-plug efficiency 527 nm InGaN green LEDs by MOCVD”. Opt. Exp., 26, 25, 33108-33115, (2018). |
|
[58] | Sarkar, B., et al. “N-and P-type doping in Al-rich AlGaN and AlN”. ECS Trans., 86, 12, 25, (2018). |
|
[59] | Pasayat, S., et al. “Demonstration of ultra-small (< 10 μ m) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (> 0.2%) for mini-displays”, Appl. Phys. Exp., 14, 1, (2020). |
|
[60] | Wong, M., et al. “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments”, Opt. Exp., 28, 4, 5787-5793, (2020). |
|
[61] | Maity, A., Grenadier, S., Li, J., Lin, J., Jiang, H. X. “Hexagonal boron nitride: Epitaxial growth and device applications”, Progress in Quantum Electronics, 76,100302, ISSN 0079-672., (2021). |
|
[62] | Maity, S., Grenadier, J., Li, J., Lin, H., Jiang, Y., et al. “Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications”. Materials 15.13, (2022). |
|
[63] | Ng, T. K., Holguin-Lerma, J. A., Kang, C. H., Ashry, I., Zhang, H., Bucci, G., & Ooi, B. S. "Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications." Journal of Physics D: Applied Physics 54.14, 143001, (2021). |
|
[64] | Pandey, J., Gim, R., Hovden, Z. “An AlGaN tunnel junction light emitting diode operating at 255 nm”. Appl. Phys. Lett., 117, 24, (2020). |
|
[65] | Pandey, J., Gim, R., Hovden Z. “Electron overflow of AlGaN deep ultraviolet light emitting diodes”. Appl. Phys. Lett., 118, 24, (2021). |
|
[66] | Liang, Y., Towe, E. “Progress in efficient doping of high aluminum-containing group III-nitrides”, Appl. Phys. Rev., 5, 1, (2018). |
|
[67] | Lu, W., et al. “Colour-tunable emission in coaxial GaInN/GaN multiple quantum shells grown on three-dimensional nanostructures”. Applied Surface Science 539:148279, (2021). |
|
[68] | Zhang, Z., et al. “A 271.8 nm deep-ultraviolet laser diode for room temperature operation”. Appl. Phys. Exp., 12, 12, (2019). |
|
[69] | Sato, K., et al. “Room-temperature operation of AlGaN ultraviolet-B laser diode at 298 nm on lattice-relaxed Al 0.6 Ga 0.4 N/AlN/sapphir”. Appl. Phys. Exp., 13, 3, (2020). |
|
[70] | Tanaka, S., et al. “Effect of dislocation density on optical gain and internal loss of AlGaN-based ultraviolet-B band lasers”. Appl. Phys. Exp., 13, 4, (2020). |
|
[71] | Mehnke, F., et al. “Electrical and optical characteristics of highly transparent MOVPE-grown AlGaN-based tunnel heterojunction LEDs emitting at 232 nm”. Photon. Res., 9, 6, 1117-1123, (2021). |
|
[72] | Ruterana, P., Morales, M., Chery, N., Ngo, T., Chauvat, M., Lekhal K., et al. “Effect of AlGaN interlayer on the GaN/InGaN/GaN/AlGaN multi-quantum wells structural properties toward red light emission”. Journal of Applied Physics.; 128-22, (2020). |
|
[73] | Meier, J., Gerd, B. “Progress and Challenges of InGaN/GaN-Based Core–Shell Microrod LEDs”. Materials 15.5: 1626. 74, (2022). |
|
[74] | Ding, K., Avrutin, O, Morkoc, H. “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes”, Crystals, 7, 10, 300, (2017). |
|
[75] | Alfaraj, N., et al. “Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials”. Journal of Semiconductors 40.12: 121801, (2019). |
|
[76] | Yong-Ho, Ra, Cheul-Ro, L. “Core–Shell Tunnel Junction Nanowire-White-Light-Emitting-Diode. Nano Letters. 20 (6), 4162-4168, (2020). |
|
[77] | Pandey, A., et al. “Enhanced doping efficiency of ultrawide band gap semiconductors by metal-semiconductor junction assisted epitaxy”. Phys. Rev. Mater., 3, 5, (2019). |
|
[78] | Yang, D., et al. “Self-contained InGaN/GaN micro-crystal arrays as individually addressable multi-color emitting pixels on a deformable substrate”. Journal of Alloys and Compounds 803: 826-833, (2019). |
|
[79] | Chen, F., Xiaohong, J., Shu, P. “Recent progress in group III-nitride nanostructures: From materials to applications”. Materials Science and Engineering: R: Reports, Volume 142,100578, ISSN 0927-796X, (2020). |
|
[80] | Janjua, B., Sun, H., Zhao, C., Anjum, D., Wu, F., Alhamoud, A., et al. “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy. Nanoscale. 2017 Jun 14;9(23):785-7813, (2017). |
|
[81] | Sergent, S., Damilano, B., Vezian, S., Chenot, S., Tsuchizawa, T., Notomi, M. “Lasing up to 380 K in a sublimated GaN nanowire”. Appl. Phys. Lett, (2020). |
|
[82] | Priante, D. “Study of ultraviolet AlGaN nanowires light-emitting diodes”. Diss, (2019). |
|
[83] | Moab, P., Dipayan, D., Mehrdad, D., Md, B., Thang H., Durgamadhab, M., Abdallah, K., James, P., Hoang, N., Khai, Hieu, T, “Fabrication of Phosphor-Free III-Nitride Nanowire Light-Emitting Diodes on Metal Substrates for Flexible Photonics”. ACS Omega, 2 (9), 5708-5714, (2017). |
|
[84] | Wei, Z., et al. “Micro-LEDs Illuminate Visible Light Communication”, in IEEE Communications Magazine, (2019). |
|
[85] | Robin, Y., Bae, S., Shubina, T., Pristovsek, M., Evropeitsev, E., Kirilenko, D., Davydov, V., Smirnov, A., Toropov, A., Jmerik, V., Kushimoto, M., Nitta, S., Ivanov, S., Amano, H. “Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes”. Sci Rep. 9; 8(1): 7311, (2018). |
|
[86] | Hartensveld, M., Ouin, G., Liu, C., Zhang, J. “Effect of KOH passivation for top-down fabricated InGaN nanowire light emitting diodes”. J. Appl. Phys., 126, 18, (2019). |
|
[87] | Zhao, S., Wang, R., Chu, S., Mi, Z. “Molecular Beam Epitaxy of III-Nitride Nanowires: Emerging Applications from Deep-Ultraviolet Light Emitters and Micro-LEDs to Artificial Photosynthesis”. 13, 2, 6-16, (2019). |
|
[88] | Wu, T., et al. “Mini-LED and micro-LED: Promising candidates for the next generation display technology”. Appl. Sci., 8, 9, 1557, (2018). |
|
[89] | Wasisto, H., Prades, J., Gulink, J., Waag, A. “Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs”. Applied Physics Reviews.;6(4), (2019). |
|
[90] | Jiang, H., Jingyu, L. “Development of nitride microLEDs and displays”. Semiconductors and Semimetals. Vol. 106. Elsevier, 1-56, (2021). |
|
[91] | Zou, X., et al. “GaN Single Nanowire p–i–n Diode for High-Temperature Operations”. ACS Applied Electronic Materials 2.3: 719-724, (2020). |
|
[92] | Yin, H., et al. “The recent advances in C60 micro/nanostructures and their optoelectronic applications”. Organic Electronics 93: 106142. (2021) |
|
[93] | Subramani, S., Kulandaivel, J. “Ultrasensitive Self-powered Heterojunction Ultraviolet Photodetector of p-GaN Nanowires on Si by Halide Chemical Vapour Deposition. Nanotechnology, 34, 13, (2022). |
|
[94] | Sett, S., Arup, K. R. “Effective Separation of Photogenerated Electron-Hole Pairs by Radial Field Facilitates Ultrahigh Photoresponse in Single Semiconductor Nanowire Photodetectors”. The Journal of Physical Chemistry C 124.41: 22808-22816, (2020). |
|
[95] | Larkin, I. A., Vdovin, E., Yu, N. “Theoretical model of giant oscillations of the photocurrent in GaAs/AlAs pin diodes”. Physica Scripta 97.9: 095811, (2022). |
|
[96] | Johar, M., et al. “Universal and scalable route to fabricate GaN nanowire-based LED on amorphous substrate by MOCVD”. Applied Materials Today 19: 100541, (2020). |
|
[97] | Goswami, L., et al. “Graphene quantum dot-sensitized ZnO-nanorod/GaN-nanotower heterostructure-based high-performance UV photodetectors”. ACS applied materials & interfaces 12.41: 47038-47047, (2020). |
|
[98] | Wu, Y. “III-Nitride Nanocrystal Based Green and Ultraviolet Optoelectronics”. Diss, (2020). |
|
[99] | Liu, X., Ayush P., Zetian M. “Nanoscale and quantum engineering of III-nitride heterostructures for high efficiency UV-C and far UV-C optoelectronics”. Japanese Journal of Applied Physics 60.11: 110501. (2021). |
|
[100] | Concordel, A., et al. “The role of surface states and point defects on optical properties of InGaN/GaN multi-quantum wells in nanowires grown by molecular beam epitaxy”. Nanotechnology 34.3: 035703, (2022). |
|
[101] | Subramani, S., Kulandaivel, J. “Ultrasensitive Self-powered Heterojunction Ultraviolet Photodetector of p-GaN Nanowires on Si by Halide Chemical Vapour Deposition”. Nanotechnology, (2022). |
|
[102] | Alavi, K., et al. “Photodetection Using Atomically Precise Graphene Nanoribbons”. ACS Applied Nano Materials 3.8: 8343-8351, (2020). |
|
[103] | Kim, J., et al. “Designing an Ultrathin Film Spectrometer Based on III-Nitride Light-Absorbing Nanostructures”. Micromachines 12.7: 760, (2021). |
|
[104] | Jegannathan, G., et al. “An overview of cmos photodetectors utilizing current-assistance for swift and efficient photo-carrier detection”. Sensors 21.13: 4576. (2021). |
|
[105] | Aiello, A., et al. “Deep ultraviolet monolayer GaN/AlN disk-in-nanowire array photodiode on silicon”. Applied Physics Letters 116.6: 061104, (2020). |
|
[106] | Yang, H. “An Introduction to Ultraviolet Detectors Based on III Group-Nitride Semiconductor”. Journal of Physics: Conference Series. 1676. 1. IOP Publishing, (2020). |
|
[107] | Kaur, D., Mukesh, K. “A strategic review on gallium oxide based deep-ultraviolet photodetectors: recent progress and future prospects”. Advanced optical materials 9.9: 2002160, (2021). |
|
[108] | Liu, J., et al. “Organic and quantum dot hybrid photodetectors: towards full-band and fast detection”. Chemical Communications, (2023). |
|
[109] | Shen, L., Edwin P., Johnny, H. “Recent developments in III–V semiconducting nanowires for high-performance photodetectors”. Materials Chemistry Frontiers 1.4: 630-645, (2017). |
|
[110] | Spies, M., Eva, M. “Nanowire photodetectors based on wurtzite semiconductor heterostructures”. Semiconductor Science and Technology 34.5: 053002, (2019). |
|
[111] | Aggarwal, N., Shibin, K., Govind, G. “GaN Nanoflowers: Growth to Optoelectronic Device”. 21st Century Nanoscience–A Handbook: 8-1, (2020). |
|
[112] | Sarkar, K., et al. “III-V nanowire-based ultraviolet to terahertz photodetectors: Device strategies, recent developments, and future possibilities”. TrAC Trends in Analytical Chemistry 130: 115989, (2020). |
|