American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2023, 11(1), 41-50
DOI: 10.12691/ajn-11-1-3
Open AccessReview Article

Review of Recent Advances of GaN Nanostructured Based Devices

M. Abdulrahman1, A. Khalil1 and Ahmed M. Nahhas1,

1Department of Electrical Engineering, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

Pub. Date: February 06, 2023

Cite this paper:
M. Abdulrahman, A. Khalil and Ahmed M. Nahhas. Review of Recent Advances of GaN Nanostructured Based Devices. American Journal of Nanomaterials. 2023; 11(1):41-50. doi: 10.12691/ajn-11-1-3

Abstract

This paper is intended to provide an overview of recent advances of GaN based nanostructured materials and devices. Because of its unique electrical, optical, and structural properties, GaN has sparked significant interest in the field of wide bandgap semiconductor research. Because of its higher surface-to-volume ratio than thin films, GaN nanostructured material offers numerous advantages for nanodevices. The ability of GaN nanostructured material to absorb ultraviolet (UV) radiation is invaluable in many optical applications. GaN nanostructured-based devices have recently received a lot of interest due to their numerous potential uses. GaN has been employed as a nanomaterial in a variety of devices, including UV photodetectors, light-emitting diodes, solar cells, and transistors. The most current developments in GaN-based devices are presented and reviewed. The performance of many device architectures demonstrated on GaN is presented. The structural, electrical, and optical characteristics are also discussed.

Keywords:
gallium nitride (GaN) nanostructured light emitting diodes nanowires ultraviolet doping

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Nahhas, A. M., “A Review of GaN Nanowires Based Sensors,” American journal of nanomaterials. 6(1):1-14. (2018).
 
[2]  Khan, A., Rao., M., Qiliang, L. “Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S”. Sensors.; 19: 905, (2019).
 
[3]  Khan, M. “Gallium nitride (GaN) nanostructures and their gas sensing properties”: A review. Sensors. 20(14):3889, (2020).
 
[4]  Sun, D., Priante, D., Min, W., Subedi, R., Shakfa, M., Ren, Z., Li, K., Lin, R., Zhao, C., Ng, T., et al. “Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation”. ACS Photonics, 5, 3305, (2018).
 
[5]  Huo, Q., Shao, Y., Wu, Y., Zhang, B., Hu, H., Hao, X. “High quality self-separated GaN crystal grown on a novel nano porous template by HVPE”. Sci. Rep, 8, 3166, (2018).
 
[6]  Li, P., Zhang, H., Li, H., Zhang, Y., Yao, Y., Palmquist, N., Iza, M., Speck, J., Nakamura, S., DenBaars, S. “Metalorganic chemical vapor deposition grown n-InGaN/n-GaN tunnel junctions for micro-light-emitting diodes with very low forward voltage”. Semicond. Sci. Technol. 35, 125023, (2020).
 
[7]  Tsay, C., et al. “Improving the photoelectrical characteristics of self-powered p-GaN film/n-ZnO nanowires heterojunction ultraviolet photodetectors through gallium and indium co-doping.” Materials Science in Semiconductor Processing. 121: 105295, (2021).
 
[8]  Liyanage, T., Ahmad, Q., Gymama, S. “Application of nanomaterials for chemical and biological sensors”: A review. IEEE Sensors Journal 21.11: 12407-12425, (2020).
 
[9]  Terna, D., et al. “The future of semiconductors nanoparticles: Synthesis, properties and applications”. Materials Science and Engineering: B 272: 115363, (2021).
 
[10]  Meneghini, M., et al. “GaN-based power devices: Physics, reliability, and perspectives”. Journal of Applied Physics 130.18: 181101, (2021).
 
[11]  Roccaforte, F., Giannazzo, F., Greco, G. “Ion Implantation Doping in Silicon Carbide and Gallium Nitride Electronic Devices”. Micro.; 2(1): 23-53, (2022).
 
[12]  Nozaki, M., Terashima, D., Yamada,T., Yoshigoe, A., Hosoi ,T., Shimura, T., et al. “Comparative study on thermal robustness of GaN and AlGaN/GaN MOS devices with thin oxide interlayers”. Japanese Journal of Applied Physics. 58(SC): SCCD08, (2019).
 
[13]  Amano, H., et al. “The 2018 GaN power electronics roadmap”. Journal of Physics D: Applied Physics 51.16: 163001, (2018).
 
[14]  Reshchikov, M., et al. “Stability of the CNHi Complex and the Blue Luminescence Band in GaN”. physica status solidi (b) 258.12: 2100392, (2021).
 
[15]  Tsao, Y., et al. “Ultrawide-bandgap semiconductors: research opportunities and challenges”. Advanced Electronic Materials 4.1: 1600501, (2018).
 
[16]  Sierakowski, K., et al. “High pressure processing of ion implanted GaN”. Electronics 9. 9: 1380, (2020).
 
[17]  Lorenz, K. “Ion Implantation into Nonconventional GaN Structures”. Physics 4.2: 548-564, (2022).
 
[18]  Uedono, A., et al. “Effect of Ultra-High-Pressure Annealing on Defect Reactions in Ion-Implanted GaN Studied by Positron Annihilation”. physica status solidi (b) 259.10: 2200183, (2022).
 
[19]  Roccaforte, F., Filippo, G., Giuseppe, G. “Ion Implantation Doping in Silicon Carbide and Gallium Nitride Electronic Devices”. Micro. 2. 1. MDPI, (2022).
 
[20]  Rebohle, L., et al. “Semiconductor Applications”. Flash Lamp Annealing: From Basics to Applications: 131-232, (2019).
 
[21]  Hursan, D., Abel, M., Baan, K., Fako, E., Samu, G. F., Nguyen, H. C., et al. “CO2 Conversion on N-Doped Carbon Catalysts via Thermo- and Electrocatalysis: Role of C–NOx Moieties”. ACS Catal., 12(16):10127, (2022).
 
[22]  Meneghini, M., De Santi, C., Abid, I., Buffolo, M., Cioni, M., Khadar, R. A., et al. “GaN-based power devices: Physics, reliability, and perspectives”. Journal of applied physics; 130(18):181101, (2021).
 
[23]  Ramesh, C., Tyagi, P., Gautam, S., Ojha, S., Gupta, G., Senthil, M., Kushvaha., S. “Controlled growth of GaN nanorods directly on flexible Mo metal foil by laser molecular beam epitaxy”. Materials Science in Semiconductor Processing, 111, (2020).
 
[24]  Rodriguez-Benitez, O., et al. “Comparative performance and assessment study of a current-fed dc-dc resonant converter combining si, sic, and GaN-based power semiconductor devices”. Electronics 9.11: 1982, (2020).
 
[25]  Mohamed, A., Stroscio, M., Mitra, A., Junxia, D., Shi, L. “Transport in III-Nitride Devices Defense Committee”. (2019).
 
[26]  Chunduri, K., Schmela., M. “Heterojunction solar technology”. Taiyang News, Munich, Germany, (2019).
 
[27]  Liu, H., Yin, H., Yang, T., Ding, H., Dong, Y. “Electrogenerated chemiluminescence resonance energy transfer between ZnGa2O4/g-C3 N 4 and gold nanoparticles/graphene and its application in the detection of thrombin”. Analyst (London).; 145(22): 7412-20, (2020).
 
[28]  Wang, Y., et al. “Comparative study on dynamic characteristics of GaN HEMT at 300 K and 150 K”. IEEE J. Electron Devices Soc, (2020).
 
[29]  Gu, Y., Wang, Y., Chen, J., Chen, B., Wang, M., Zou, X. “Temperature-Dependent Dynamic Degradation of Carbon-Doped GaN HEMTs”. TED.; 68(7): 3290-5, (2021).
 
[30]  Ren, Q., Wang, H., Lu, X., Tong, Y., Li, G. “Recent Progress on MOF-Derived Heteroatom-Doped Carbon-Based Electrocatalysts for Oxygen Reduction Reaction”. AdvancedScience; 5(3): 1700515, (2018).
 
[31]  Zhang, Y., Chen, Z., Zhang, K., Feng, Zhao, H. “Laser-Assisted Metal–Organic Chemical Vapor Deposition of Gallium Nitride”. Phys Status Solidi RRL.; 15(6), (2021).
 
[32]  You, S., Geens, K., Borga, M., Liang, H., Hahn, H., Fahle, D., et al. “Vertical GaN devices: Process and reliability. Microelectronics and reliability”. 126: 114218, (2021).
 
[33]  Di Pede, E., Roland, M. “Preghiera e filiazione nel Vangelo di Luca (coll. Epifania della Parola. Testi ermeneutici, 12)”, Revue theologique de Louvain. 2012; 43(4): 587-8, (2010).
 
[34]  Loeto, K. “Uncovering the carrier dynamics of AlInGaN semiconductors using time-resolved cathodoluminescence”. Materials science and technology. 38(12): 780-93, (2022).
 
[35]  Gao, Y., Sun, D., Jiang, X., Zhao, J. “Point defects in group III nitrides: A comparative first-principles study”. Journal of applied physics. 125(21): 215705, (2019).
 
[36]  Nahhas, A. M. “Review of GaN Nanowires Based Sensors. American journal of nanomaterials”. 8(1): 32-47, (2020).
 
[37]  Zhang, M., Zhao, C., Gong, H., Niu, G., Wang, F. “Porous GaN Submicron Rods for Gas Sensor with High Sensitivity and Excellent Stability at High Temperature”. ACS Appl. Mater. Interfaces, 11, 33124-33131, (2019).
 
[38]  Shi, C., Rani, A., Thomson, B., Debnath, R., Motayed, A., Yoannou, D.E., Li, Q. “High-performance room-temperature TiO2 -functionalized GaN nanowire gas sensors”. Appl. Phys. Lett. 115, 121602, (2019).
 
[39]  Zhang, M., Zhao, C., Gong, H., Niu, G., Wang, F. “High Sensitivity Gas Sensor Based on Porous GaN Nanorods with Excellent High-Temperature Stability”. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, pp. 1369-1372, (2019).
 
[40]  Gomes, B. A., Rodrigues, J., Rabelo, R., Kumar, N., Kozlov, S. “IoT-Enabled Gas Sensors: Technologies, Applications, and Opportunities”. JSAN, 8, 57, (2019).
 
[41]  Khan, M., Thomson, B., Motayed, A., Li, Q., Rao, M. “Functionalization of GaN Nanowire Sensors with Metal Oxides: An Experimental and DFT Investigation”. IEEE Sens. J., 99, 1, (2020).
 
[42]  Chen, F., Xiaohong, J., Shu, L. “Recent progress in group III-nitride nanostructures: From materials to applications”. Materials Science and Engineering: R: Reports 142: 100578,‏ (2020).
 
[43]  Mengwei, S., et al. “Characterization and simulation of 280 nm UV-LED degradation.” AIP Advances 11.3 (2021): 035315. Despaigne et al., “Full InGaN red light emitting diodes”, J. Appl. Phys., 128, (2020).
 
[44]  Dussaigne, A., et al. “Full InGaN red (625 nm) micro-LED (10 μ m) demonstration on a relaxed pseudo-substrate”. Appl. Phys. Exp., 14, 9, (2021).
 
[45]  Zhuang, Z., Iida D., Ohkawa, K. “Investigation of InGaN-based red/green micro-light-emitting diodes”, Opt. Lett., 46, 8, 1912-1915, (2021).
 
[46]  Oh, J., et al. “Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures”, Opt. Exp., 26, 9, 11194-11200, (2018).
 
[47]  Iida, D., Zhuang, Z., Kirilenko, P., Velazquez-Rizo M., Ohkawa, K. “Demonstration of low forward voltage InGaN-based red LEDs”, Appl. Phys. Exp., 13, 3, (2020).
 
[48]  Iida, D., Zhuang, Z., Kirilenko, P., Velazquez-Rizo, M., Najmi M., Ohkawa, K. “633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress”. Appl. Phys. Lett., 116, 16, (2020).
 
[49]  Wang, X., Kumagai, N., Hao, G. “High-efficiency high-power AlGaInP thin-film LEDs with micron-sized truncated cones as light-extraction structures”. Phys. Status Solidi (A), 215, 6, (2018).
 
[50]  Chen, S., et al. “Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer”, Photon. Res., 7, 4, 416-422, (2019).
 
[51]  Smith, J., et al. “Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μ m in diameter”, Appl. Phys. Lett., 116, 7, (2020).
 
[52]  Guo, J., Ding, J., Mo, C., Zheng, C., Jiang, F. “Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate”. Chin. Phys. B, 29, 4, (2020).
 
[53]  Pasayat, S., et al. “Demonstration ultra-small (<10 μ m) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays”. Appl. Phys. Exp., 14, (2021).
 
[54]  Zhang, S., Zhang, J., Gao, X., Wang, C., Zheng, M., et al. “Efficient emission of InGaN-based light-emitting diodes: Toward orange and red”. Photon. Res., 8, 11, 1671-1675, (2020).
 
[55]  Bai, J., et al. “Ultrasmall ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μ LEDs) with narrow spectral line width). ACS Nano, 14, 6, 6906-6911, (2020).
 
[56]  Amador-Mendez, N. “Nanostructured III-nitride light emitting diodes. Micro and nanotechnologies/Microelectronics”. Universite Paris-Saclay, (2022).
 
[57]  Li, P., et al. “Very high external quantum efficiency and wall-plug efficiency 527 nm InGaN green LEDs by MOCVD”. Opt. Exp., 26, 25, 33108-33115, (2018).
 
[58]  Sarkar, B., et al. “N-and P-type doping in Al-rich AlGaN and AlN”. ECS Trans., 86, 12, 25, (2018).
 
[59]  Pasayat, S., et al. “Demonstration of ultra-small (< 10 μ m) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (> 0.2%) for mini-displays”, Appl. Phys. Exp., 14, 1, (2020).
 
[60]  Wong, M., et al. “Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments”, Opt. Exp., 28, 4, 5787-5793, (2020).
 
[61]  Maity, A., Grenadier, S., Li, J., Lin, J., Jiang, H. X. “Hexagonal boron nitride: Epitaxial growth and device applications”, Progress in Quantum Electronics, 76,100302, ISSN 0079-672., (2021).
 
[62]  Maity, S., Grenadier, J., Li, J., Lin, H., Jiang, Y., et al. “Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications”. Materials 15.13, (2022).
 
[63]  Ng, T. K., Holguin-Lerma, J. A., Kang, C. H., Ashry, I., Zhang, H., Bucci, G., & Ooi, B. S. "Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications." Journal of Physics D: Applied Physics 54.14, 143001,‏ (2021).
 
[64]  Pandey, J., Gim, R., Hovden, Z. “An AlGaN tunnel junction light emitting diode operating at 255 nm”. Appl. Phys. Lett., 117, 24, (2020).
 
[65]  Pandey, J., Gim, R., Hovden Z. “Electron overflow of AlGaN deep ultraviolet light emitting diodes”. Appl. Phys. Lett., 118, 24, (2021).
 
[66]  Liang, Y., Towe, E. “Progress in efficient doping of high aluminum-containing group III-nitrides”, Appl. Phys. Rev., 5, 1, (2018).
 
[67]  Lu, W., et al. “Colour-tunable emission in coaxial GaInN/GaN multiple quantum shells grown on three-dimensional nanostructures”. Applied Surface Science 539:148279, (2021).
 
[68]  Zhang, Z., et al. “A 271.8 nm deep-ultraviolet laser diode for room temperature operation”. Appl. Phys. Exp., 12, 12, (2019).
 
[69]  Sato, K., et al. “Room-temperature operation of AlGaN ultraviolet-B laser diode at 298 nm on lattice-relaxed Al 0.6 Ga 0.4 N/AlN/sapphir”. Appl. Phys. Exp., 13, 3, (2020).
 
[70]  Tanaka, S., et al. “Effect of dislocation density on optical gain and internal loss of AlGaN-based ultraviolet-B band lasers”. Appl. Phys. Exp., 13, 4, (2020).
 
[71]  Mehnke, F., et al. “Electrical and optical characteristics of highly transparent MOVPE-grown AlGaN-based tunnel heterojunction LEDs emitting at 232 nm”. Photon. Res., 9, 6, 1117-1123, (2021).
 
[72]  Ruterana, P., Morales, M., Chery, N., Ngo, T., Chauvat, M., Lekhal K., et al. “Effect of AlGaN interlayer on the GaN/InGaN/GaN/AlGaN multi-quantum wells structural properties toward red light emission”. Journal of Applied Physics.; 128-22, (2020).
 
[73]  Meier, J., Gerd, B. “Progress and Challenges of InGaN/GaN-Based Core–Shell Microrod LEDs”. Materials 15.5: 1626. 74, (2022).
 
[74]  Ding, K., Avrutin, O, Morkoc, H. “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes”, Crystals, 7, 10, 300, (2017).
 
[75]  Alfaraj, N., et al. “Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials”. Journal of Semiconductors 40.12: 121801, (2019).
 
[76]  Yong-Ho, Ra, Cheul-Ro, L. “Core–Shell Tunnel Junction Nanowire-White-Light-Emitting-Diode. Nano Letters. 20 (6), 4162-4168, (2020).
 
[77]  Pandey, A., et al. “Enhanced doping efficiency of ultrawide band gap semiconductors by metal-semiconductor junction assisted epitaxy”. Phys. Rev. Mater., 3, 5, (2019).
 
[78]  Yang, D., et al. “Self-contained InGaN/GaN micro-crystal arrays as individually addressable multi-color emitting pixels on a deformable substrate”. Journal of Alloys and Compounds 803: 826-833, (2019).
 
[79]  Chen, F., Xiaohong, J., Shu, P. “Recent progress in group III-nitride nanostructures: From materials to applications”. Materials Science and Engineering: R: Reports, Volume 142,100578, ISSN 0927-796X, (2020).
 
[80]  Janjua, B., Sun, H., Zhao, C., Anjum, D., Wu, F., Alhamoud, A., et al. “Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy. Nanoscale. 2017 Jun 14;9(23):785-7813, (2017).
 
[81]  Sergent, S., Damilano, B., Vezian, S., Chenot, S., Tsuchizawa, T., Notomi, M. “Lasing up to 380 K in a sublimated GaN nanowire”. Appl. Phys. Lett, (2020).
 
[82]  Priante, D. “Study of ultraviolet AlGaN nanowires light-emitting diodes”. Diss, (2019).
 
[83]  Moab, P., Dipayan, D., Mehrdad, D., Md, B., Thang H., Durgamadhab, M., Abdallah, K., James, P., Hoang, N., Khai, Hieu, T, “Fabrication of Phosphor-Free III-Nitride Nanowire Light-Emitting Diodes on Metal Substrates for Flexible Photonics”. ACS Omega, 2 (9), 5708-5714, (2017).
 
[84]  Wei, Z., et al. “Micro-LEDs Illuminate Visible Light Communication”, in IEEE Communications Magazine, (2019).
 
[85]  Robin, Y., Bae, S., Shubina, T., Pristovsek, M., Evropeitsev, E., Kirilenko, D., Davydov, V., Smirnov, A., Toropov, A., Jmerik, V., Kushimoto, M., Nitta, S., Ivanov, S., Amano, H. “Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes”. Sci Rep. 9; 8(1): 7311, (2018).
 
[86]  Hartensveld, M., Ouin, G., Liu, C., Zhang, J. “Effect of KOH passivation for top-down fabricated InGaN nanowire light emitting diodes”. J. Appl. Phys., 126, 18, (2019).
 
[87]  Zhao, S., Wang, R., Chu, S., Mi, Z. “Molecular Beam Epitaxy of III-Nitride Nanowires: Emerging Applications from Deep-Ultraviolet Light Emitters and Micro-LEDs to Artificial Photosynthesis”. 13, 2, 6-16, (2019).
 
[88]  Wu, T., et al. “Mini-LED and micro-LED: Promising candidates for the next generation display technology”. Appl. Sci., 8, 9, 1557, (2018).
 
[89]  Wasisto, H., Prades, J., Gulink, J., Waag, A. “Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs”. Applied Physics Reviews.;6(4), (2019).
 
[90]  Jiang, H., Jingyu, L. “Development of nitride microLEDs and displays”. Semiconductors and Semimetals. Vol. 106. Elsevier, 1-56, (2021).
 
[91]  Zou, X., et al. “GaN Single Nanowire p–i–n Diode for High-Temperature Operations”. ACS Applied Electronic Materials 2.3: 719-724, (2020).
 
[92]  Yin, H., et al. “The recent advances in C60 micro/nanostructures and their optoelectronic applications”. Organic Electronics 93: 106142. (2021)‏
 
[93]  Subramani, S., Kulandaivel, J. “Ultrasensitive Self-powered Heterojunction Ultraviolet Photodetector of p-GaN Nanowires on Si by Halide Chemical Vapour Deposition. Nanotechnology, 34, 13, (2022).
 
[94]  Sett, S., Arup, K. R. “Effective Separation of Photogenerated Electron-Hole Pairs by Radial Field Facilitates Ultrahigh Photoresponse in Single Semiconductor Nanowire Photodetectors”. The Journal of Physical Chemistry C 124.41: 22808-22816, (2020).
 
[95]  Larkin, I. A., Vdovin, E., Yu, N. “Theoretical model of giant oscillations of the photocurrent in GaAs/AlAs pin diodes”. Physica Scripta 97.9: 095811, (2022).
 
[96]  Johar, M., et al. “Universal and scalable route to fabricate GaN nanowire-based LED on amorphous substrate by MOCVD”. Applied Materials Today 19: 100541, (2020).
 
[97]  Goswami, L., et al. “Graphene quantum dot-sensitized ZnO-nanorod/GaN-nanotower heterostructure-based high-performance UV photodetectors”. ACS applied materials & interfaces 12.41: 47038-47047, (2020).
 
[98]  Wu, Y. “III-Nitride Nanocrystal Based Green and Ultraviolet Optoelectronics. Diss, (2020).
 
[99]  Liu, X., Ayush P., Zetian M. “Nanoscale and quantum engineering of III-nitride heterostructures for high efficiency UV-C and far UV-C optoelectronics”. Japanese Journal of Applied Physics 60.11: 110501. (2021).
 
[100]  Concordel, A., et al. “The role of surface states and point defects on optical properties of InGaN/GaN multi-quantum wells in nanowires grown by molecular beam epitaxy”. Nanotechnology 34.3: 035703, (2022).
 
[101]  Subramani, S., Kulandaivel, J. “Ultrasensitive Self-powered Heterojunction Ultraviolet Photodetector of p-GaN Nanowires on Si by Halide Chemical Vapour Deposition”. Nanotechnology, (2022).
 
[102]  Alavi, K., et al. “Photodetection Using Atomically Precise Graphene Nanoribbons”. ACS Applied Nano Materials 3.8: 8343-8351, (2020).
 
[103]  Kim, J., et al. “Designing an Ultrathin Film Spectrometer Based on III-Nitride Light-Absorbing Nanostructures”. Micromachines 12.7: 760, (2021).
 
[104]  Jegannathan, G., et al. “An overview of cmos photodetectors utilizing current-assistance for swift and efficient photo-carrier detection”. Sensors 21.13: 4576. (2021).
 
[105]  Aiello, A., et al. “Deep ultraviolet monolayer GaN/AlN disk-in-nanowire array photodiode on silicon”. Applied Physics Letters 116.6: 061104, (2020).
 
[106]  Yang, H. “An Introduction to Ultraviolet Detectors Based on III Group-Nitride Semiconductor”. Journal of Physics: Conference Series. 1676. 1. IOP Publishing, (2020).
 
[107]  Kaur, D., Mukesh, K. “A strategic review on gallium oxide based deep-ultraviolet photodetectors: recent progress and future prospects”. Advanced optical materials 9.9: 2002160, (2021).
 
[108]  Liu, J., et al. “Organic and quantum dot hybrid photodetectors: towards full-band and fast detection”. Chemical Communications, (2023).
 
[109]  Shen, L., Edwin P., Johnny, H. “Recent developments in III–V semiconducting nanowires for high-performance photodetectors”. Materials Chemistry Frontiers 1.4: 630-645, (2017).
 
[110]  Spies, M., Eva, M. “Nanowire photodetectors based on wurtzite semiconductor heterostructures”. Semiconductor Science and Technology 34.5: 053002, (2019).
 
[111]  Aggarwal, N., Shibin, K., Govind, G. “GaN Nanoflowers: Growth to Optoelectronic Device”. 21st Century Nanoscience–A Handbook: 8-1, (2020).
 
[112]  Sarkar, K., et al. “III-V nanowire-based ultraviolet to terahertz photodetectors: Device strategies, recent developments, and future possibilities”. TrAC Trends in Analytical Chemistry 130: 115989, (2020).