American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2021, 9(1), 12-22
DOI: 10.12691/ajn-9-1-2
Open AccessArticle

Numerical Study of Density Functional Theory of Multi-electronic Atoms: Case of Carbon and Helium

Yande DIOUF1, , Kharouna TALLA1, Saïdou DIALLO2 and Louis GOMIS2

1Group of Solid Physics and Materials Sciences, Cheikh Anta Diop University, Dakar, Senegal

2Plasma Physics Laboratory and Interdisciplinary Research, Cheikh Anta Diop University, Dakar, Senegal

Pub. Date: April 12, 2021

Cite this paper:
Yande DIOUF, Kharouna TALLA, Saïdou DIALLO and Louis GOMIS. Numerical Study of Density Functional Theory of Multi-electronic Atoms: Case of Carbon and Helium. American Journal of Nanomaterials. 2021; 9(1):12-22. doi: 10.12691/ajn-9-1-2

Abstract

The ab-initio method based on density functional theory was used via local density approximation (LDA) to analyze the electronic structure of helium atoms and carbon. This involves calculating physical properties of these atoms such as effective potential, electron density and radial wave functions in both the ground state and the first three excited states. Thus, taking into account the structural complexity of the system, the calculations were carried out implicitly by the finite element method via the MATLAB software in deterministic mode. At the end of the study, the results obtained are consistent and revealing. They have shown that the effective potential of the helium atom decreases with position both in its ground state and in its first three excited states, so for the carbon atom, they have shown that these two states evolve in the same way. Regarding the electron density, the results revealed that at each radius of an atomic orbital, the electron density passes through a maximum for the helium atom while for carbon, the results show a succession of two and three peaks. Finally, with regard to radial wave functions, the results showed that the 1s orbital is closer to the nucleus than the 2s, 2p and 3s orbitals for the helium atom. For the carbon atom, the results confirm the information provided by the electron density. From the results it can be concluded that the effective potential of a multielectronic atom decreases with position and that the densest orbitals are those near the nucleus.

Keywords:
Schrodinger equation DFT implicit method finite-difference approach MATLAB

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Bahnes, A., Vos, W., L., Kuijper, A., Barrat, J., L., and chouten, J., A., “High pressure phase diagram of helium hydrogen calculated through fluid integral equations and density functional theory of freezing’’, J. Phys. Cond. Matt., 3.11.1613.1991 “Study of two first-principle methods applied to Heuslers”, Master's Thesis, USTO-MB, Algerie .128p, 2014.
 
[2]  Zuehlsdorff, T., J., and al., “Linear-scaling time-dependent density-functional theory in the linear response formalism” J. Chem. Phys. 139. 064104. 2013.
 
[3]  Holzapfel, W., B, “Physics of solids under strong compression”, Reports on Progress in Physics, 59. 29-9. 1996.
 
[4]  Kohn, W., “Nobel Lecture: Electronic structure of matter - wave functions and density functionals”, Rev. Mod. Phys 71.1253. 1999.
 
[5]  Diola, B., “Understanding density functional theory (DFT) and completing it in practice”, AIP Advances 4, 127104. 2014.
 
[6]  Ravo, T., R., Raoelina, A., Hery, and A., Rakotoson, H., “The Functional Theory of Density and its applications in Nanotechnology” communication made during the first international conference on Nanotechnology in Madagascar, April 11-12, 2018.
 
[7]  Kohn, W., Becke, A., D., and Parr, R., G., “Density Functional Theory of Electronic Structure”, J. Phys. Chem. 100. 31. 12974-1298. 1996.
 
[8]  Zhibing, Li. “Density functional theory for field emission from carbon nano-structures”, 159, Part 2, 162-172. 2015.
 
[9]  Gonze, X., Rignanese, G., M., Verstraete, M., Beuken, J., M., Pouillon, Y., Caracas, R., Jollet, F., Torrent, M., Zerah, G., Mikami, M., Ghosez, Ph., Veithen, M., Raty, J., Y., Olevano, V., Bruneval, F., Reining, L., Godby, R., Onida, G., Hamann, D., R. and Allan., D., C., “A brief introduction to the ABINIT software package”, Z. Kristallogr, 220. 558-562. 2005.
 
[10]  Hafner, J., Wolverton, C., Ceder, G., “Toward computational material design: The impact of Density Functional Theory on material research”, MRS Bull, 31. 681. 2006.
 
[11]  Ziegler, T., “Approximate density functional theory as a practical tool in molecular energetics and dynamics”, Chem. Rev. 91. 651-667. 1991.
 
[12]  Yang, Z., H., Pribram, J., A., Burke, K., and Ullrich, C., A., “Direct extraction of excitation energies from ensemble density-functional theory”, Phys. Rev. Lett. 119. 033003. 2017.
 
[13]  Gonze, X., Amadon, B., Anglade, P., M., Beuken, J., M., Bottin, F., Boulanger, P. , Bruneval, F., Caliste, D., Caracas, R., Cote, M., Deutsch, T., Genovese, L., Ghosez, Ph., Giantomassi, M., Goedecker, S., Hamann, D., R., Hermet, P., Jollet, F., Jomard, G., Leroux, S., Mancini, M., Mazevet, S., Oliveira, M., J., T., Onida, G., Pouillon, Y., Rangel, T., Rignanese, G., M., Sangalli, D., Shaltaf, R., Torrent, M., Verstraete, M., J., Zerah, G., and Zwanziger, J., W., “ABINIT: First-principles approach of materials and nanosystem properties”, Computer Phys. Comm, 180. 2582-2615. 2009.
 
[14]  Hohenberg, P., Kohn, W., “Inhomogeneous Electron Gas”, Physical Review, 136. 3B. B864-B871. 1964.
 
[15]  Kohn, W., Sham, L., J., “Self-Consistent Equations Including Exchange and Correlation Effects”, Physical Review, 140. 4A. A1133-A1138. 1965.
 
[16]  Blackburn, S., “Analysis of the electronic properties of superconductors using the density functional theory”, Thesis, University of Montreal, 2013.
 
[17]  Serdar, Ö., “First principles Modeling of Nanostructures”, Turk J Phys. 27. 2003.
 
[18]  Tang, Q., Zhen, Z., Zhongfang, C., “Innovation and discovery of graphene-like materials via density-functional theory computations”, WIREs Comput Mol Sci, 5. 360-379. 2015.
 
[19]  Shamim, M., D., and Harbola, M., K., “Application of an excited state lda exchange energy functional for the calculation of transition energy of atoms within time independent density functional theory”, Journal of Physics B: Atomic, Molecular and Optical Physics. 43. 215002. 2010.
 
[20]  Jones, R., O., “Density functional theory: Its origins, rise to prominence, and future”, Reviews of Modern Physics, 87. 2015.
 
[21]  Yousef, S., James, R., C., Suzanne, M., S., “Numerical methods for electronic structure calculations of materials”, SIAM Review, 52.1. 3-54. 2010.
 
[22]  Evangelista, F., A., Shushkov, P., and Tully, J., C. “Orthogonality constrained density functional theory for electronic excited states”, The Journal of Physical Chemistry A 117. 7378. 2013.
 
[23]  Xiao, D., W., Richard, L., M., Thomas, M., H., and Gustavo, E., S., “Density Functional Theory Studies of the Electronic Structure of Solid State Actinide Oxides”. Chem. Rev, 113. 2. 1063-1096. 2013.
 
[24]  Gonze, X., Beuken, J., M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G., M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, Ph., Raty, J., Y., and Allan., D., C., “First-principles computation of material properties: the ABINIT software project”, Computational Materials Science. 25. 478-492. 2002.
 
[25]  Novoselov K., S., “Electric Field Effect in Atomically Thin Carbon Films”, Science.306.5696. 666-669. 2004.
 
[26]  Hughes, G., Thomas, J., Marsh, H., and Reed, R., “Origin of etch pits on graphite surfaces”, Carbon 1. 339-343.1964.
 
[27]  McKee, D., W., “Metal oxides as catalysts for the oxidation of graphite”. Carbon 8, 131. 1970.
 
[28]  Harris, P., “Controlled atmosphere electron microscopy studies of graphite gasification-4. Catalysis of the graphite-O2 reaction by silver”. Carbon 12, 189-197. 1974.
 
[29]  Laulan, M., “Doctoral thesis in Nuclei, Atoms, Aggregates, Plasma,” Study of helium and beryllium atoms in an intense and short laser field”, University of Bordeaux I, 2004.
 
[30]  Militzer, B., “Correlations in hot dense helium”, J. Phys. A.Math. Theor., 42.21. 214001. 2009.
 
[31]  Nettelmann, N., Holst, B., Kietzmann, A., French, M., Redmer, R., and Blaschke, D, “Ab Initio Equation of State Data for Hydrogen, Helium, and Water and the Internal Structure of Jupiter”, Astrophys. J., 683. 1217, August. 2008.
 
[32]  Kowalski, P., M., Mazevet, S., Saumon, D., and Challacombe, M, “Equation of state and optical properties of warm dense helium”, Phys. Rev. B.76.075112.Aug. 2007.
 
[33]  Lorenzen, W., Holst, B., and Redmer, R., “Demixing of hydrogen and helium at megabar pressures”, Phys. Rev. Lett., 102: 115701, Mar. 2009.
 
[34]  Vos, W., L., Kuijper, A., Barrat, J., L., and chouten, J., A., “High pressure phase diagram of helium hydrogen calculated through fluid integral equations and density functional theory of freezing”, J. Phys. Cond. Matt., 3.11.1613. 1991.
 
[35]  Ayers, P., W., Levy, M., and Nagy, “Communication: Kohn-Sham theory for excited states of coulomb systems”, The. Journal of Chemical Physics 143. 191101. 2015.
 
[36]  Ayers, P., W., Levy, M., and Nagy, A., “Time-independent density-functional theory for excited states of Coulomb systems”, Phys. Rev. A 85. 042518. 2012.
 
[37]  Subhayan, R., Stefano, S., and David D., O., “Neutral excitation densityfunctional theory: an efficient and variational first-principles method for simulating neutral excitations in molecules”, Scientific Reports, 10.8947. 2020.
 
[38]  Zexing, Q., Yingjin, M., “Variational Multistate Density Functional Theory for a Balanced Treatment of Static and Dynamic Correlation”. Journal of Chemical Theory and Computation, 16. 8. 4912-4922. 2020.
 
[39]  Krykunov, M., Grimme, S., and Ziegler, T., “Accurate theoretical description of the 1la and 1lb excited states in acenes using the all order constricted variational density functional theory method and the local density approximation”, J. Chem. Theory Comput. 8. 4434-4440. 2012.
 
[40]  Kohn, W., Becke, A., D., and Parr, R., G., “Density Functional Theory of Electronic Structure”, J. Phys. Chem. 100.31. 12974-1298. 1996.
 
[41]  Kowalczyk, T., Tsuchimochi, T., Chen, P., T., Top, L., and Voorhis, T., V., “Excitation energies and Stokes shifts from a restricted open-shell Kohn-Sham approach”, J. Chem. Phys, 138. 164101. 2013.
 
[42]  Ruiz, S., M., Skylaris, C., K., A., “variational method for density functional theory calculations on metallic systems with thousands of atoms”, J. Chem. Phys. 139.054107. 2013.
 
[43]  Hanson-Heine, M., W., D., George, M., W., and Besley, N., A., ”Calculating excited state properties using Kohn-Sham density functional theory”, J. Chem. Phys. 138.064101. 2013.
 
[44]  Seidl, A., Görling, A., Vogl, P., Majewski, J., A., Levy, M., “Generalized Kohn-Sham schemes and the band-gap problem”, Phys. Rev. B. 53.3764-377. 1996.
 
[45]  Parr, R., G., Yang, W., ”Density-Functional Theory of Atoms and Molecules”, Oxford Uni-versity Press, Oxford, 1989.