American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2019, 7(1), 22-29
DOI: 10.12691/ajn-7-1-3
Open AccessReview Article

Optical Properties of Nanocomposite Films: Size-tuned vs. Shape-tuned Silver Nanoparticles

Maryuri Roca1, , Hannah Emily Skipper1 and Jessica Ranesizafiniaina Ndrianasy1

1Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, United States

Pub. Date: June 07, 2019

Cite this paper:
Maryuri Roca, Hannah Emily Skipper and Jessica Ranesizafiniaina Ndrianasy. Optical Properties of Nanocomposite Films: Size-tuned vs. Shape-tuned Silver Nanoparticles. American Journal of Nanomaterials. 2019; 7(1):22-29. doi: 10.12691/ajn-7-1-3

Abstract

Color change is a desirable response when designing user-friendly chemical sensors. However, when preparing colored nanocomposites sensors, it can be challenging to transfer the color from solution into films. This work demonstrates that films of various colors can be prepared by blending premade nanoparticles with poly(vinyl alcohol) (PVA); however, the color in solution differed from the color in film. While, this color discrepancy and the appearance of the films depended on how the optical properties of nanoparticles were tuned, UV-visible spectroscopy and Transmission Electron Microscopy (TEM) showed that changes in nanoparticle’s morphology was not the cause of the color discrepancy. Reflecting the polydispersity of nanoparticles in solution, more homogeneous colored films were obtained by controlling the size of nanoparticles rather than their shape. This work shows how to readily prepare silver-PVA nanocomposite films of various colors, which may facilitate the design of nanocomposites intended for chemical sensing based on the optical properties of silver nanoparticles.

Keywords:
color PVA plasmonic nanocomposite blended polymer

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Hsu, S-W., Rodarte, A.L., Som, M., Arya, G., and Tao, A.R., “Colloidal Plasmonic Nanocomposites: From Fabrication to Optical Function”, Chemical Review, 118 (6) 3100-20. 2018.
 
[2]  Prakash, J., Harris, R.A., and Swart, H.C, “Embedded plasmonic nanostructures: synthesis, fundamental aspects and their surface enhanced Raman scattering applications”, International Reviews in Physical Chemistry, 35 (3) 353-98. 2016.
 
[3]  Abargues, R., Rodriguez-Canto, P.J., Albert, S., Suarez, I., and Martinez-Pastor, J.P., “Plasmonic optical sensors printed from Ag-PVA nanoinks”, Journal of Material Chemistry C, 2 (5) 908-15. 2014.
 
[4]  Ramesh, G.V., and Radhakrishnan, T.P., “A Universal Sensor for Mercury (Hg, Hg-I, Hg-II) Based on Silver Nanoparticle-Embedded Polymer Thin Film”, ACS Applied Materials & Interfaces, 3 (4) 988-94. 2011.
 
[5]  Nimrodh-Ananth, A., Umapathy, S., Sophia, J., Mathavan, T., and Mangalaraj, D., “On the optical and thermal properties of in situ/ex situ reduced Ag NP's/PVA composites and its role as a simple SPR-based protein sensor”, Applied Nanoscience, 1 (2) 87-96. 2011.
 
[6]  Hariprasad, E., and Radhakrishnan, T.P. “In Situ Fabricated Polymer-Silver Nanocomposite Thin Film as an Inexpensive and Efficient Substrate for Surface-Enhanced Raman Scattering”, Langmuir, 29 (42) 13050-7. 2013.
 
[7]  Yu, D.G., Lin, W.C., Lin, C.H., Chang, L.M., and Yang, M.C., “An in situ reduction method for preparing silver/poly(vinyl alcohol) nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates”, Materials Chemistry Physics, 101 (1) 93-8. 2007.
 
[8]  Huang, T., and Xu, X.H.N., “Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy” Journal of Materials Chemistry, 20 (44) 9867-76. 2010.
 
[9]  Mendis, P., de Silva, R.M., de Silva, K.M.N., Wijenayaka, L.A., Jayawardana, K., and Yan, M., “Nanosilver rainbow: a rapid and facile method to tune different colours of nanosilver through the controlled synthesis of stable spherical silver nanoparticles” RSC Advances, 6 (54) 48792-9. 2016.
 
[10]  Rivero, P.J., Goicoechea, J., Urrutia, A., Matias, I.R., and Arregui, F.J., “Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles”, Nanoscale Research Letters, 8, 1-9. 2013.
 
[11]  De, G., Medda, S.K., De, S., and Pal, S., “Metal nanoparticle doped coloured coatings on glasses and plastics through tuning of surface plasmon band position”, Bulletin of Materials Science, 31 (3) 477-85. 2008.
 
[12]  Boev, V.I., Perez-Juste, J., Pastoriza-Santos, I., Silva, C.J.R., De Gomes, M., and Liz-Marzan, L.M., “Flexible Ureasil Hybrids with Tailored Optical Properties through Doping with Metal Nanoparticles”, Langmuir, 20 (23) 10268-72. 2004.
 
[13]  Caseri, W., “Color switching in nanocomposites comprising inorganic nanoparticles dispersed in a polymer matrix”, Journal of Materials Chemistry, 20 (27) 5582-92. 2010.
 
[14]  Liz-Marzan, L.M., “Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles”, Langmuir, 22 (1) 32-41. 2006.
 
[15]  Wilson, O., Wilson, G.J., and Mulvaney, P., “Laser writing in polarized silver nanorod films”, Advanced Materials, 14 (13-14) 1000-4. 2002.
 
[16]  Liu, L., Gao, Z., Jiang, B., Bai, Y., Wang, W., and Yin, Y., “Reversible Assembly and Dynamic Plasmonic Tuning of Ag Nanoparticles Enabled by Limited Ligand Protection”, Nano Letters, 18 (8) 5312-8. 2018.
 
[17]  Ghanipour, M., and Dorranian, D., “Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films”, Journal of Nanomaterials, 897043, 1-11. 2013.
 
[18]  Saini, I., Rozra, J., Chandak, N., Aggarwal, S., Sharma, P.K., and Sharma, A., “Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles”, Materials Chemistry and Physics, 139 (2-3) 802-10. 2013.
 
[19]  Vodnik, V.V., Saponjic, Z., Dzunuzovic, J.V., Bogdanovic, U., Mitric, M., and Nedeljkovic, J., “Anisotropic silver nanoparticles as filler for the formation of hybrid nanocomposites”, Materials Research Bulletin, 48 (1) 52-7. 2013.
 
[20]  Duncan, K.A., et al. “Art as an Avenue to Science Literacy: Teaching Nanotechnology through Stained Glass”, Journal of Chemical Education, 87 (10) 1031-8. 2010.
 
[21]  Porel, S., Singh, S., Harsha, S.S., Rao, D.N., and Radhakrishnan, T.P., “Nanoparticle-embedded polymer: In situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting”, Chemistry of Materials, 17 (1) 9-12. 2005.
 
[22]  Feng, Q.Q., Dang, Z.M., Li, N., and Cao, X.L., “Preparation and dielectric property of Ag-PVA nano-composite”, Materials Science and Engineering B-Solid State Materials for Advanced Technology, 99 (1-3) 325-8. 2003.
 
[23]  Mbhele, Z.H., Salemane, M.G., van Sittert, C., Nedeljkovic, J.M., Djokovic, V., and Luyt, A.S., “Fabrication and characterization of silver-polyvinyl alcohol nanocomposites”, Chemistry of Materials, 15 (26) 5019-24. 2003.
 
[24]  Ramesh, G.V., Porel, S., and Radhakrishnan, T.P., “Polymer thin films embedded with in situ grown metal nanoparticles”, Chemical Society Reviews, 38 (9) 2646-56. 2009.
 
[25]  Prakash, J., Pivin, J.C., and Swart, H.C., “Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications”, Advances in Colloidal and Interface Sciences, 226 (Part B) 187-202. 2015.
 
[26]  Abargues, R., Marques-Hueso, J., Canet-Ferrer, J., Pedrueza, E., Valdes, J.L., Jimenez, E., and Martinez-Pastor, J.P., “High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics”, Nanotechnology, 19 (35) 355308. 2008
 
[27]  Tyurin, A., De Filpo, G., Cupelli, D., Nicoletta, F.P., Mashin, A., and Chidichimo, G., “Particle size tuning in silver-polyacrylonitrile nanocomposites”, eXPRESS Polymer Letters, 4 (2) 71-8. 2010.
 
[28]  Hore, M.J.A., Frischknecht, A.L., and Composto, R.J.,”Nanorod Assemblies in Polymer Films and Their Dispersion-Dependent Optical Properties”, ACS Macro Letters, 1 (1) 115-21. 2012.
 
[29]  Metraux, G.S., and Mirkin, C.A., “Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness”, Advanced Materials, 17 (4) 412-5. 2005.
 
[30]  Tang, B., Li, J.L., Hou, X.L., Afrin, T., Sun, L., and Wang, X.G., “Colorful and Antibacterial Silk Fiber from Anisotropic Silver Nanoparticles”, Industrial & Engineering Chemistry Research, 52 (12) 4556-63. 2013.
 
[31]  Mahmoud, M.A., “Simultaneous Reduction of Metal Ions by Multiple Reducing Agents Initiates the Asymmetric Growth of Metallic Nanocrystals”, Crystal Growth & Design, 15 (9) 4279-86. 2015.
 
[32]  Haes, A.J., Haynes, C.L., McFarland, A.D., Schatz, G.C., Van Duyne, R.R., and Zou, S.L., “Plasmonic materials for surface-enhanced sensing and spectroscopy”, MRS Bulletin, 30 (5) 368-75. 2005.
 
[33]  Lee, K.S., and El-Sayed, M.A., “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition”, Journal of Physical Chemistry B, 110 (39) 19220-5. 2006.
 
[34]  Mulvaney, P., “Surface plasmon spectroscopy of nanosized metal particles” Langmuir, 12 (3) 788-800. 1996.
 
[35]  Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C., “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment”, Journal of Physical Chemistry B, 107 (3) 668-77. 2003.
 
[36]  Pelton, M., and Bryant, G.W., Introduction to Metal-Nanoparticle Plasmonics, WILEY, 2013.
 
[37]  Haes, A.J., Zou, S., Schatz, G.C., and Van Duyne, R.P., “Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles”, Journal of Physical Chemistry B, 108 (22) 6961-6968. 2004.
 
[38]  Roca, M., Pandya, N., Nath, S., and Haes, A., “Linear Assembly of Gold Nanoparticle Clusters via Centrifugation”, Langmuir, 26 (3) 2035-41. 2010.
 
[39]  Ghosh, S.K., and Pal, T., “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications”, Chemical Reviews, 107 (11) 4797-862. 2007.
 
[40]  Shi, W., Casas, J., Venkataramasubramani, M., and Tang, L., “Synthesis and characterization of gold nanoparticles with plasmon absorbance wavelength tunable from visible to near infrared region”, ISRN Nanomaterials, 659043, 1-10. 2012.
 
[41]  Tang, B., Xu, S.P., Hou, X.L., Li, J.H., Sun, L., Xu, W,Q., and Wang, X.G., “Shape Evolution of Silver Nanoplates through Heating and Photoinduction”, ACS Applied Materials & Interfaces, 5 (3) 646-53. 2013.
 
[42]  Mahmoud, K.H., “Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites”, Spectrochimica Acta, Part A, 138, 434-40. 2015.
 
[43]  Haiss, W., Thanh, N., Aveyard, J., and Fernig, D., “Determination of size and concentration of gold nanoparticles from UV-Vis spectra”, Analytical Chemistry, 79 (11) 4215-21. 2007.
 
[44]  Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., and Schultz, S., “Shape effects in plasmon resonance of individual colloidal silver nanoparticles”, Journal of Chemical Physics, 116 (15) 6755-9. 2002.
 
[45]  Teng, C.Y., Sheng, Y.J., and Tsao, H.K., “Particle size-induced transition between surface segregation and bulk aggregation in a thin film of athermal polymer-nanoparticle blends”, Journal of Chemical Physics, 146 (1) 014904. 2017.
 
[46]  Patil, N.D., Bhardwaj, R., and Sharma, A., “Self-Sorting of Bidispersed Colloidal Particles Near Contact Line of an Evaporating Sessile Droplet”, Langmuir, 34 (40) 12058-70. 2018.