American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: https://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2019, 7(1), 10-21
DOI: 10.12691/ajn-7-1-2
Open AccessReview Article

Review of AlGaN/GaN HEMTs Based Devices

Ahmed M. Nahhas1,

1Department of Electrical Engineering, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

Pub. Date: April 11, 2019

Cite this paper:
Ahmed M. Nahhas. Review of AlGaN/GaN HEMTs Based Devices. American Journal of Nanomaterials. 2019; 7(1):10-21. doi: 10.12691/ajn-7-1-2

Abstract

This paper presents a review of the recent advances of the AlGaN/GaN high-electron-mobility transistors (HEMTs) based devices. The AlGaN/GaN HEMTs have attracted potential for high frequency, voltage, power, temperature, and low noise applications. This is due to the superior electrical, electronic properties, high electron velocity of the GaN. These properties include the GaN wide band gap energy, electrical, optical and structural properties. The based structures of GaN such as AlGaN/GaN are driving the interest in the research areas of GaN HEMTs. Recently, the AlGaN/GaN HEMTs have gained a great potential in radio frequency (RF) and power electronics (PE) based devices and applications. The recent aspects of the AlGaN/GaN HEMTs devices are presented and discussed. The performance of different device demonstrated based on AlGaN/GaN HEMTs are reviewed. The structural, electrical, and optical properties of these devices are also reviewed.

Keywords:
Gallium Nitride (GaN) HEMTs Traps Defects Aluminum gallium nitride/gallium nitride (AlGaN/GaN) Aluminum Nitride (AlN)

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  J. Leitner, A. Strejc, D. Sedmidubsky, K. Ruzi, “High temperature enthalpy and heat capacity of GaN,” Thermochimica Acta 401, 169-173 (2003).
 
[2]  Z. Linli, L. Haonan, “On the role of piezoelectricity in phonon properties and thermal conductivity of GaN nanofilms,” Theoretical and Applied Mechanics Letters 6, 277-281 (2016).
 
[3]  J. Zolper, “A review of junction field effect transistors for high-temperature and high power electronics,” Solid State Electron 42, 2153-2156 (1998).
 
[4]  M. Alim, M. Ali, A. Rezazadeh, C. Gaquiere, “Thermal response for intermodulation distortion components of GaN HEMT for low and high frequency applications,” Microelectronic Engineering 209, 53-59 (2019).
 
[5]  S. Sze, K. Ng, “Physics of Semiconductor Devices,” John Wiley & Sons, (2006).
 
[6]  M. Gassoumi, A. Helal, H. Maaref, M. Gassoumi, “DC and RF characteristics optimization of AlGaN/GaN/BGaN/GaN/Si HEMT for microwave-power and high temperature application,” Results in Physics 12, 302-306 (2019).
 
[7]  A. Azarifar, N. Donmezer, “Multiscale analytical correction technique for two-dimensional thermal models of AlGaN/GaN HEMTs,” Microelectronics Reliability 74, 82-87 (2017).
 
[8]  Y. Wu, M. Jacob-Mitos, M. Moore, S. Heikman, “A 97.8% efficient GaN HEMT boost converter with 300-W output power at 1 MHz,” IEEE Electron Device Letters 29, 824-826 (2008).
 
[9]  C. Lee, W. Lin, Y. Lee, J. Huang, “Characterizations of enhancement-mode double heterostructure GaN HEMTs with gate field plates,” IEEE Transactions on Electron Devices 65, 488-492 (2018).
 
[10]  M. Yanagihara, Y. Uemoto, T. Ueda, T. Tanaka, D. Ueda, “Recent advances in GaN transistors for future emerging applications,” Physica Status Solidi A 206, 1221-1227 (2009).
 
[11]  T. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, R. Gutmann, “SiC and GaN bipolar power devices,” Solid State Electronics 44, 277-301 (2000).
 
[12]  Q. Hao, H. Zhao, Y. Xiao, M. Brandon, “Electrothermal studies of GaN based high electron mobility transistors with improved thermal designs,” International Journal of Heat and Mass Transfer 116, 496-506 (2018).
 
[13]  S. Chander, S. Gupta, Ajay, M. Gupta, “Enhancement of breakdown voltage in AlGaN/GaN HEMT using passivation technique for microwave application,” Superlattices and Microstructures 120, 217-222 (2018).
 
[14]  Z. Li, C. Li, D. Peng, D. Zhang, X. Dong, L. Pan, W. Luo, L. Li, Q. Yang, “Growth of quaternary InAlGaN barrier with ultrathin thickness for HEMT application,” Superlattices and Microstructures 118, 213-220 (2018).
 
[15]  U. Mishra, P. Parikh, Y. Wu, “AlGaN/GaN HEMTs: an overview of device operation and applications,” Proceedings of the IEEE 90, 1022-1031 (2002).
 
[16]  O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, W. chaff, L. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AIGaN/GaN heterostructures,” Journal of Applied Physics 85, 3222-3233 (1999).
 
[17]  G. Grecoa, F. Iucolanob, F. Roccaforte, “Review of technology for normally-off HEMTs with p-GaN gate,” Materials Science in Semiconductor Processing 78, 96-106 (2018).
 
[18]  G. Haijun, D. Baoxing, W. Hao, Y. Yintang, “Analytical model of AlGaN/GaN HEMTs with a partial GaN cap layer,” Superlattices and Microstructures 123, 210-217 (2018).
 
[19]  D. Panda, T. Lenka, “Oxide thickness dependent compact model of channel noise for E-mode AlGaN/GaN MOS-HEMT,” International Journal of Electronics and Communications 82, 467-473 (2017).
 
[20]  A. Chvala, J. Marek, P. Pribytnya, A. Satka, S. Stoffels, N. Posthuma, S. Decoutere, D. Donoval, “Analysis of multifinger power HEMTs supported by effective 3-D device electrothermal simulation,” Microelectronics Reliability 78, 148-155 (2017).
 
[21]  A. Mojab, Z. Hemmat, H. Riazmontazer, A. Rahnamaee, “Introducing optical cascode GaN HEMT,” IEEE Transactions on Electron Devices 64, 796-804 (2017).
 
[22]  S. Faramehr, K. Kalna, P. Igic, “Drift-diffusion and hydrodynamic modeling of current collapse in GaN HEMTs for RF power application,” Semiconductor Science and Technology 29, 025007-025017 (2014).
 
[23]  J. Vobecky, “The current status of power semiconductors,” Facta University Series Electron Energy 28, 193-203 (2015).
 
[24]  B. Ubochi, S. Faramehr, K. Ahmed, P. Igic, K. Kalna, B. Ubochi, “Induced trapping in scaled GaN HEMTs,” Microelectronics Reliability 71, 35-40 (2017).
 
[25]  S. Razavi, S. Pour, P. Najari, “New GaN based HEMT with Si3N4 or un-doped region in the barrier for high power applications,” Superlattices and Microstructures 118, 221-229 (2018).
 
[26]  H. Zhang, P. Ma, Y. Lu, B. Zhao, J. Zheng, X. Ma, Y. Hao, “Extraction method for parasitic capacitances and inductances of HEMT models,” Solid State Electronics 129, 108-113 (2017).
 
[27]  A. Chini, F. Soci, M. Meneghini, G. Meneghesso, E. Zanoni, “Deep levels characterization in GaN HEMTs-Part II: experimental and numerical evaluation of self-heating effects on the extraction of traps activation energy,” IEEE Transactions on Electron Devices 60, 3176-3182 (2013).
 
[28]  J. Joh, L. Xia, J. Alamo, “Gate current degradation mechanisms of GaN high electron mobility transistors,” in Proceedings IEDM, 385-388 (2007).
 
[29]  M. Mocanu, C. Unger, M. Pfost, P. Waltereit, R. Reiner, “Thermal stability and failure mechanism of Schottky gate AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices 64, 848-855 (2017).
 
[30]  G. Meneghesso, G. Verzellesi, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini, E. Zanoni, “Reliability of GaN high electron mobility transistors: state of the art and perspectives,” IEEE Transactions on Device & Materials Reliability 8, 332-343 (2008).
 
[31]  L. Yen-Ku, N. Shuichi, L. Hsiao-Chieh, L. Shih-Chien, W. Chia-Hsun, W. Yuen-Yee, L. Quang, H. Chang, P. Hsu, H. Samukawa, S. Chang, E. Yi, “AlGaN/GaN HEMTs with damage-free neutral beam etched gate recess for high performance millimeter wave applications,” IEEE Electron Device Letters 37, 1395-1398 (2016).
 
[32]  Z. Lei, H. Guoc, M. Tanga, C. Zeng, Z. Zhang, H. Chen, Y. Enb, Y. Huang, Y. Chen, C. Peng, “Degradation mechanisms of AlGaN/GaN HEMTs under 800 MeV Bi ions irradiation,” Microelectronics Reliability 80, 312-316 (2018).
 
[33]  H. Lee, M. Bae, S. Jo, J. Shin, D. Son, C. Won, H. Jeong, J. Lee, S. Kang, “AlGaN/GaN high electron mobility transistor based biosensor for the detection of C-reactive protein,” Sensors 15, 18416-18426 (2015).
 
[34]  S. Indu, R. Abiral, C. Yen-Wen, H. Chen-Pin, C. Pei-chi, C. Wen-Hsin, L. Geng-Yen, C. Jen-Inn, S. Shu-Chu, L. Gwo-Bin, W. Yu-Lin, “High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor biosensors,” Biosensors and Bioelectronics 100, 282-289 (2018).
 
[35]  A. Fletcher, D. Nirmal, “Review a survey of Gallium Nitride HEMT for RF and high power applications,” Superlattices and Microstructures 109, 519-537 (2017).
 
[36]  N. Takuma, M. Tsukasa, I. Akihumi, S. Yosuke, S. Katsuomi, S. Muneyoshi, O. Toshiyuki, A. Yuji, Y. Eiji, Y. Kiichi, T. Yasunori, “Enhancement of drain current by an AlN spacer layer insertion in AlGaN/GaN high electron mobility transistors with Si-Ion-Implanted source/drain contacts,” Japanese Journal of Applied Physics 50, 064101 (2011).
 
[37]  M. Wosko, B. Paszkiewicz, R. Paszkiewicz, M. Tlaczala, “Influence of AlN spacer on the properties of AlGaN/AlN/GaN heterostructures,” Applied Optics 43, 61-66 (2013).
 
[38]  B. Benbakhti, A. Soltani, K. Kalna, M. Rousseau, J. De Jaeger, “Effects of self-heating on performance degradation in AlGaN/GaN based devices,” IEEE Transactions on Electron Devices 56, 2178-2185 (2009).
 
[39]  X. Zheng, S. Feng, Y. Zhang, J. Li, “Evaluation of the Schottky contact degradation on the temperature transient measurements in GaN HEMTs,” IEEE Transactions on Electron Devices, 65, 1734-1738, (2018).
 
[40]  S. Binari, W. Kruppa, H. Dietrich, G. Kelner, A. Wickenden, J. Freitas, “Fabrication and characterization of GaN FETs,” Solid State Electronics 41, 1549-1554 (1997).
 
[41]  C. Nguyen, N. Nguyen, D. Grider, “Drain current compression in GaN MODFETs under large-signal modulation at microwave frequencies,” Electronics Letters 35, 1380 (1999).
 
[42]  M. Gonschorek, J. Carlin, E. Feltin, M. Py, N. Grandjean, “High electron mobility lattice-matched AlInN/GaN field effect transistor heterostructures,” Applied Physics Letters 89, 062106 (2006).
 
[43]  J. Freedsman, A. Watanabe, Y. Urayama, T. Egawa, “Enhanced two dimensional electron gas transport characteristics in Al2O3/AlInN/GaN metal-oxide semiconductor high electron mobility transistors on Si substrate,” Applied Physics Letters 107, 103506 (2015).
 
[44]  Z. Fang, B. Claflin, D. Look, D. Green, R. Vetury, “Deep traps in AlGaN/GaN heterostructures studied by deep level transient spectroscopy: effect of carbon concentration in GaN buffer layers,” Journal of Applied Physics 108, 063706 (2010).
 
[45]  E. Miller, X. Dang, H. Wieder, P. Asbeck, E. Yu, G. Sullivan, J. Redwing, “Trap characterization by gate-drain conductance and capacitance dispersion studies of an AlGaN/GaN heterostructure field effect transistor,” Journal of Applied Physics 87, 8070 (2000).
 
[46]  D. Park, M. Kim, K. Beom, S. Cho, C. Kang, T. Yoon, “Reversible capacitance changes in the MOS capacitor with an ITO/CeO2/p-Si structure,” Journal of Alloys and Compounds 786, 655-661 (2019).
 
[47]  R. Herbert, Y. Hwang, S. Stemmer, “Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces,” Journal of Applied Physics 108, 124101 (2010).
 
[48]  J. Zhu, X. Ma, B. Hou, W. Chen, H. Yue, “Investigation of trap states in high Al content AlGaN/GaN high electron mobility transistors by frequency dependent capacitance and conductance analysis,” AIP Advances 4, 371081-371087 (2014).
 
[49]  A. Chakraborty, D. Biswas, “Comparison of trap characteristics between AlGaN/GaN and AlGaN/InGaN/GaN heterostructure by frequency dependent conductance measurement,” Applied Physics Letters 106, 082112 (2015).
 
[50]  S. Latrach, E. Frayssinet, N. Defrance, S. Chenot, Y. Cordier, C. Gaqui, H. Maaref, Trap states analysis in AlGaN/AlN/GaN and InAlN/AlN/GaN high electron mobility transistors,” Current Applied Physics 17, 1601-1608 (2017).
 
[51]  R. Quay, “Gallium Nitride Electronics”, Springer Science & Business Media 96 (2008).
 
[52]  A. Hitoshi, S. Hiroyuki, K. Naotaka, N. Yohei, C. Kentaro, N. Ken, “AlGaN/GaN MIS HEMT modeling of frequency dispersion and self-heating effects,” 2018 IEEE International Symposium on Radio Frequency Integration Technology (RFIT) Radio Frequency Integration Technology (RFIT),1-3 Aug (2018).
 
[53]  A. Darwish, A. Bayba, H. Hung, “Thermal resistance calculation of AlGaN-GaN devices,” IEEE Transactions on Microwave Theory and Techniques 52, 2611-2620 (2004).
 
[54]  J. Kuzmik, P. Javorka, A. Alam, M. Marso, M. Heuken, P. Kordos. “Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method,” IEEE Transactions on Electron Devices 49, 1496-1498 (2002).
 
[55]  R. Menozzi, G. Membreno, B. Nener, G. Parish, G. Sozzi, L. Faraone, “Temperature-dependent characterization of AlGaN/GaN HEMTs: thermal and source/drain resistances,” IEEE Transactions on Device and Materials Reliability 8, 255-264 (2008).
 
[56]  H. Zhu, X. Meng, X. Zheng, Y. Yang, S. Feng, Y. Zhang, G. Chunsheng, “Review: Effect of substrate thinning on the electronic transport characteristics of AlGaN/GaN HEMTs,” Solid State Electronics 145, 40-45 (2018).
 
[57]  R. White, “GaN: The challenges ahead,” IEEE Power Electronics Magazine 1, 54-56 (2014).
 
[58]  Z. Tang, Q. Jiang, Y. Lu, S Huang, S. Yang, X. Tang, K. Chen, “600-V normally Off SiNx/AlGaN/GaN MIS-HEMT with large gate swing and low current collapse,” IEEE Electron Device Letters 34, 1373-1375 (2013).
 
[59]  W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, “Recessed gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Transaction on Electron Devices 53, 356-362 (2006).
 
[60]  S. Burnham, K. Boutros, P. Hashimoto, C. Butler, D. Wong, M. Hu, M. Micovic, “Gate-recessed normally-off GaN-on-Si HEMT using a new O2-BCl3 digital etching technique,” Physics Status Solidi C 7, 2010-2012 (2010).
 
[61]  C. Chang, S. Pearton, C. Lo, F. Ren, I. Kravchenko, A. Dabiran, A. Wowchak, B. Cui, P. Chow, “Development of enhancement mode AlN/GaN high electron mobility transistors,” Applied Physics Letters 94, 263505 (2009).
 
[62]  L. Su, F. Lee, J. Huang, “Enhancement-mode GaN-based high electron mobility transistors on the Si substrate with a p-type GaN cap layer,” IEEE Transactions on Electron Devices 61, 460-465 (2014).
 
[63]  Y. Yadav, B. Upadhyay, M. Meer, N. Bhardwaj, S. Ganguly, D. Saha, “Ti/Au/Al/Ni/Au low contact resistance and sharp edge acuity for highly scalable AlGaN/GaN HEMTs,” IEEE Electron Device Letters 40, 67-70 (2019).
 
[64]  S. Ghosh, A. Dasgupta, S. Khandelwal, S. Agnihotri, Y. Chauhan, “Surface potential-based compact modeling of gate current in AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices 62, 443-448 (2015).
 
[65]  B. Padmanabhan, D. Vasileska, S. Goodnick, “Is self-heating responsible for the current collapse in GaN HEMTs,” Journal of Computational Electronics 11, 129-36 (2012).
 
[66]  N. Ahmed, A. Dutta, “Analytical models for the 2DEG concentration and gate leakage current in AlGaN/GaN HEMTs,” Solid State Electronics 132, 64-72 (2017).
 
[67]  S. Dinara, S. Jana, S. Ghosh, P. Mukhopadhyay, R. Kumar, A. Chakraborty, S. Bhattacharya, D. Biswas, “Enhancement of two dimensional electron gas concentrations due to Si3N4 passivation on Al0.3Ga0.7N/GaN heterostructure: Strain and interface capacitance analysis,” AIP Advices 5, 047136 (2015).
 
[68]  D. Nirmal, L. Arivazhagan, A. Augustine Fletcher, J. Ajayan, P. Prajoon, “Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application,” Superlattices and Microstructures 113, 810-820 (2018).
 
[69]  T. Liua, C. Jianga, X. Huang, C. Dua, Z. Zhaoa, L. Jinga, X. Lia, S. Hana, J. Suna, X. Pua, J. Zhaia, W. Hu, “Electrical transportation and piezotronic-effect modulation in AlGaN/GaN MOS HEMTs and un-passivated HEMTs,” Nano Energy 39, 53-59 (2017).
 
[70]  S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, “Temperature dependence of gate leakage current in AlGaN/GaN high electron mobility transistors,” Applied Physics Letters 82, 3110-2 (2003).
 
[71]  F. Berthet, S. Petitdidier, Y. Guhel, J. Trolet, P. Mary, A. Vivier, C. Gaquiere, B. Boudart, “Analysis of degradation mechanisms in AlInN/GaN HEMTs by electroluminescence technique,” Solid State Electronics 127, 13-19 (2017).
 
[72]  R. Pengelly, S. Wood, J. Milligan, S. Sheppard, W. Pribble, “A review of GaN on SiC high electron mobility power transistors and MMICs,” IEEE Transactions on Microwave Theory and Techniques 60, 1764-1783 (2012).
 
[73]  G. Zhua, G. Lianga, Y. Zhoub, X. Chenc, X. Xuc, X. Fenga, A. Songa, “Reactive evaporation of SiOx films for passivation of GaN high electron mobility transistors,” Journal of Physics and Chemistry of Solids 129, 54-60 (2019).
 
[74]  P. Upadhyay, M. Meer, K. Takhar, D. Khachariya, A. Kumar, D. Banerjeee, S. Ganguly, A. Laha, D. Saha, “Improved ohmic contact to GaN and AlGaN/GaN two dimensional electron gas using trap assisted tunneling by B implantation,” Physics Status Solidi B 252, 989-995 (2015).
 
[75]  L. Zhang, J. Shi, H. Huang, X. Liu, S. Zhao, P. Wang, D. Zhang, “Low temperature ohmic contact formation in GaN high electron mobility transistors using microwave annealing,” Electronic Devices Letters 36, 896-898 (2015).
 
[76]  Q. Feng, L. Li, Y. Hao, J. Ni, J. Zhang, “The improvement of ohmic contact of Ti/Al/Ni/Au to AlGaN/GaN HEMT by multi-step annealing method,” Solid State Electronics 53, 955-958 (2009).
 
[77]  M. Lin, Z. Ma, F. Huang, Z. Fan, L. Allen, H. Morkoc, “Low resistance ohmic contacts on wide band gap GaN,” Applied Physics Letters 63, 1003-1005 (1993).
 
[78]  P. Whiting, N. Rudawski, M. Holzworth, S. Pearton, K. Jones, L. Liub, T. Kang, F. Ren, “Nanocrack formation in AlGaN/GaN high electron mobility transistors utilizing Ti/Al/Ni/Au ohmic contacts,” Microelectronics Reliability 70, 41-481 (2017).
 
[79]  A. Nadim, K. Dutta, “Analytical models for the 2DEG concentration and gate leakage current in AlGaN/GaN HEMTs,” Solid State Electronics 132, 64-72 (2017).
 
[80]  C. Apurba, G. Saptarsi, M. Partha, J. Sanjay, D. Mukulika, B. Ankush, M. Mihir, K. Rahul, D. Subhashis, D. Palash, B. Dhrubes, “Reverse bias leakage current mechanism of AlGaN/InGaN/GaN heterostructure,” Electronic Materials Letters 12, 232-236 (2016).
 
[81]  H. Liu, Z. Zhang, W. Luo, “Analysis of reverse gate leakage mechanism of AlGaN/GaN HEMTs with N2 plasma surface treatment,” Solid State Electronics 144, 60-66 (2018).
 
[82]  H. Sun, M. Liu, P. Liu, X. Lin, X. Cui, J. Chen, D. Chen, “Performance optimization of lateral AlGaN/GaN HEMTs with cap gate on 150-mm silicon substrate,” Solid State Electronics 130, 28-32 (2017).
 
[83]  G. Pavlidis, S. Pavlidis, E. Heller, E. Moore, R. Vetury, S. Graham, “Characterization of AlGaN/GaN HEMTs using gate resistance thermometry,” IEEE Transactions on Electron Devices 64, 78-83 (2017).
 
[84]  Y. Chen, Y. Zhang, Y. Liu, X. Liao, Y. En, W. Fang, Y. Huang, “Effect of hydrogen on defects of AlGaN/GaN HEMTs characterized by low frequency noise,” IEEE Transactions on Electron Devices 65, 1321-1326 (2018).
 
[85]  P. Prystawkoa, M. Sarzynskia, A. Nowakowska-Siwinskab, D. Crippac, P. Kruszewskia, W. Wojtasiakd, M. Leszczynskia, “AlGaN HEMTs on patterned resistive/conductive SiC templates,” Journal of Crystal Growth 464, 159-163 (2017).
 
[86]  D. Zhang, X. Cheng, L. Zhenga, L. Shen, Q. Wang, Z. Gua, R. Qiana, D. Wu, W. Zhou, D. Cao, Y. Yua, “Effects of polycrystalline AlN filmon the dynamic performance of AlGaN/GaN high electron mobility transistors,” Materials and Design 148, 1-7 (2018).
 
[87]  T. Koa, D. Lina, C. Lin, C. Chang, J. Zhang, S. Tud, “High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer,” Journal of Crystal Growth 464, 175-179 (2017).
 
[88]  W. Sasangka, G. Syaranamual, Y. Gaoa, R. I Made, C. Gana, C. Thompsona, “Improved reliability of AlGaN/GaN-on-Si high electron mobility transistors (HEMTs) with high density silicon nitride passivation,” Microelectronics Reliability 76, 287-291 (2017).
 
[89]  S. Mahajan, A. Malik, R. Laishram, S. Vinayak, “Performance enhancement of gate annealed AlGaN/GaN HEMTs,” Journal of the Korean Physical Society 70, 533-538 (2017).
 
[90]  S. Dhakad, N. Sharma, C. Periasamy, N. Chaturvedi, “Optimization of ohmic contacts on thick and thin AlGaN/GaN HEMTs structures,” Superlattices and Microstructures 111, 922-926 (2017).
 
[91]  K. Takhar, M. Meer, B. Upadhyay, S. Ganguly, D. Saha, “Performance improvement and better scalability of wet-recessed and wet-oxidized AlGaN/GaN high electron mobility transistors,” Solid State Electronics 131, 39-44 (2017).
 
[92]  A. Malik, C. Sharma, R. Laishram, R. Bag, D. Rawal, S. Vinayak, R. Sharma, “Role of AlGaN/GaN interface traps on negative threshold voltage shift in AlGaN/GaN HEMT,” Solid State Electronics 142, 8-13 (2018).
 
[93]  Z. Bai, J. Du, Y. Liu, Q. Xin, Y. Liu, Q. Yu, “Study on the electrical degradation of AlGaN/GaN MIS-HEMTs induced by residual stress of SiNx passivation,” Solid State Electronics 133, 31-37 (2017).
 
[94]  H. Sasaki, T. Hisaka, K. Kadoiwa, T. Okua, S. Onoda, T. Ohshima, E. Taguchi, H. Yasuda, “Ultra-high voltage electron microscopy investigation of irradiation induced displacement defects on AlGaN/GaN HEMTs,” Microelectronics Reliability 81, 312-319 (2018).
 
[95]  B. Upadhyay, K. Takhar, J. Jha, S. Ganguly, D. Saha, “Surface stoichiometry modification and improved DC/RF characteristics by plasma treated and annealed AlGaN/GaN HEMTs,” Solid State Electronics 141, 1-6 (2018).