[1] | Liyanapathiranage, A., Dassanayake, R.S., Gamage, A.; Karri, R.R., Manamperi, A., Evon, P., Jayakodi, Y., Madhujith, T., & Merah, O. (2023). Recent Developments in Edible Films and Coatings for Fruits and Vegetables. Coatings 13.1177. |
|
[2] | Liyanapathiranage, A., Dassanayake, R.S., Gamage, A.; Karri, R.R., Manamperi, A., Evon, P., Jayakodi, Y., Madhujith, T., & Merah, O. (2023). Recent Developments in Edible Films and Coatings for Fruits and Vegetables. Coatings 13.1177. |
|
[3] | Perera, K. Y, Jaiswal, A. K, & Jaiswal S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods. 12.12: 2422. |
|
[4] | Perera, K. Y, Jaiswal, A. K, & Jaiswal S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods. 12.12: 2422. |
|
[5] | Valdés, A., , A. C., , M., , M. G., & ., A. (2014). Natural additives and agricultural wastes in biopolymer formulations for food packaging. istry 2: 6. |
|
[6] | Valdés, A., Mellinas, A. C., Ramos, M., Garrigós, M. G., & Jiménez., A. (2014). Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry 2: 6. |
|
[7] | Grassino, A. N., Halambek, J., Djaković, S., Brnčić, S. R., Dent, M., & Grabarić, Z. (2016). Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocolloids 52: 265-274. |
|
[8] | Grassino, A. N., Halambek, J., Djaković, S., Brnčić, S. R., Dent, M., & Grabarić, Z. (2016). Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocolloids 52: 265-274. |
|
[9] | Laranjeira, T., Costa, A., Faria-Silva, C., Ribeiro, D., de Oliveira, J. M. P. F., Simões, S., & Ascenso, A. (2022). Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management. Molecules (Basel, Switzerland) 27.5: 1701. |
|
[10] | Laranjeira, T., Costa, A., Faria-Silva, C., Ribeiro, D., de Oliveira, J. M. P. F., Simões, S., & Ascenso, A. (2022). Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management. Molecules (Basel, Switzerland) 27.5: 1701. |
|
[11] | Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydrate Polymer Technologies and Applications 2.100024. |
|
[12] | Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydrate Polymer Technologies and Applications 2.100024. |
|
[13] | Perez-Pérez, C., Regalado-González, C., Rodriguez, C., Barbosa-Rodríguez, J. R. & Villaseñor-Ortega, F., (2006). Incorporation of antimicrobial agents in food packaging films and coatings. Advances in Agricultural and Food Biotechnology. 87: 193-216. |
|
[14] | Perez-Pérez, C., Regalado-González, C., Rodriguez, C., Barbosa-Rodríguez, J. R. & Villaseñor-Ortega, F., (2006). Incorporation of antimicrobial agents in food packaging films and coatings. Advances in Agricultural and Food Biotechnology. 87: 193-216. |
|
[15] | Abd El-Moez, S. I., El-Badawi, A. Y., & Omer, H. A. A. (2014). Assessment of Antimicrobial effect of Moringa: In vitro and in vivo evaluation. African Journal of Microbiology Research 8.42: 3630-3638. |
|
[16] | Abd El-Moez, S. I., El-Badawi, A. Y., & Omer, H. A. A. (2014). Assessment of Antimicrobial effect of Moringa: In vitro and in vivo evaluation. African Journal of Microbiology Research 8.42: 3630-3638. |
|
[17] | Charoensin, S. (2014). Antioxidant and anticancer activities of Moringa oleifera leaves. Journal of Medicinal Plant Research 8.7: 318-325. |
|
[18] | Charoensin, S. (2014). Antioxidant and anticancer activities of Moringa oleifera leaves. Journal of Medicinal Plant Research 8.7: 318-325. |
|
[19] | Espitia, P. J. P., Avena-Bustillos, R. J., Du, W.-X., Chiou, B. S., Williams, T. G., Wood, D., McHugh, T. H. & Soares, N. F. F. (2014). Physical and Antibacterial Properties of Açaí Edible Films Formulated with Thyme Essential Oil and Apple Skin Polyphenols. Journal of Food Science. 79: M903-M910. |
|
[20] | Espitia, P. J. P., Avena-Bustillos, R. J., Du, W.-X., Chiou, B. S., Williams, T. G., Wood, D., McHugh, T. H. & Soares, N. F. F. (2014). Physical and Antibacterial Properties of Açaí Edible Films Formulated with Thyme Essential Oil and Apple Skin Polyphenols. Journal of Food Science. 79: M903-M910. |
|
[21] | Pandey, A. K., Kumar, P., Singh, P., Tripathi, N. N., & Bajpai, V. K. (2017). Essential Oils: Sources of Antimicrobials and Food Preservatives. Frontiers in microbiology 7.2161. |
|
[22] | Pandey, A. K., Kumar, P., Singh, P., Tripathi, N. N., & Bajpai, V. K. (2017). Essential Oils: Sources of Antimicrobials and Food Preservatives. Frontiers in microbiology 7.2161. |
|
[23] | Nazmi, N. N. M. & Sarbon, N. M. (2019). Response Surface Methodology on development and formulation optimisation of chicken skin gelatine film blended with carboxymethyl cellulose as affected by varying plasticiser concentrations. International Food Research Journal. 26.1: 47 – 57. |
|
[24] | Nazmi, N. N. M. & Sarbon, N. M. (2019). Response Surface Methodology on development and formulation optimisation of chicken skin gelatine film blended with carboxymethyl cellulose as affected by varying plasticiser concentrations. International Food Research Journal. 26.1: 47 – 57. |
|
[25] | Chowdhury, B. R., Dutta, C., Chakraborty, R., Das, L., Mukhopadhyay, R. S., & Raychaudhuri, U. (1999). The Effect of Turmeric, Lime, and Lemon on the Color and Rheological Characteristics of Tomato Puree. Journal of Culinary Science & Technology 7: 219–238. |
|
[26] | Chowdhury, B. R., Dutta, C., Chakraborty, R., Das, L., Mukhopadhyay, R. S., & Raychaudhuri, U. (1999). The Effect of Turmeric, Lime, and Lemon on the Color and Rheological Characteristics of Tomato Puree. Journal of Culinary Science & Technology 7: 219–238. |
|
[27] | Donegà V, Marchetti, M.G, Pedrini P, Costa, S., & Tamburini, E. (2015). Valorisation of Tomato Dried Peels Powder as Thickening Agent in Tomato Purees. Journal of Food Process Technology 6: 511. |
|
[28] | Donegà V, Marchetti, M.G, Pedrini P, Costa, S., & Tamburini, E. (2015). Valorisation of Tomato Dried Peels Powder as Thickening Agent in Tomato Purees. Journal of Food Process Technology 6: 511. |
|
[29] | Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activtity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products 44: 566-571. |
|
[30] | Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activtity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products 44: 566-571. |
|
[31] | Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 15; 76.5: 965-77. |
|
[32] | Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 15; 76.5: 965-77. |
|
[33] | Olapade, A. A. & Umeohia, U. E. (2021). Development and Evaluation of Nutraceutical Products from Soybean, Sorghum and Basil Leaf Using Response Surface Methodology. Journal of Food Science and Nutrition Research 4: 144-160. |
|
[34] | Olapade, A. A. & Umeohia, U. E. (2021). Development and Evaluation of Nutraceutical Products from Soybean, Sorghum and Basil Leaf Using Response Surface Methodology. Journal of Food Science and Nutrition Research 4: 144-160. |
|
[35] | Chambi, H. N. M., & Grosso, C. R. F. (2011). Mechanical and water vapor permeability properties of biodegradables films based on methylcellulose, glucomannan, pectin and gelatin. Food Science and Technology (Campinas). 31.3: 739-746. |
|
[36] | Chambi, H. N. M., & Grosso, C. R. F. (2011). Mechanical and water vapor permeability properties of biodegradables films based on methylcellulose, glucomannan, pectin and gelatin. Food Science and Technology (Campinas). 31.3: 739-746. |
|
[37] | Bourbon, A. I., Pinheiro, A. C., Cerqueira, M. A., Rocha, C. M. R., Avides, M. C., Quintas, M. A. C., & Vicente, A. A. (2011). Physico-chemical characterisation of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering 106: 111–118. |
|
[38] | Bourbon, A. I., Pinheiro, A. C., Cerqueira, M. A., Rocha, C. M. R., Avides, M. C., Quintas, M. A. C., & Vicente, A. A. (2011). Physico-chemical characterisation of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering 106: 111–118. |
|
[39] | Pérez-Mateos, M., Montero, P., & Gómez-Guillén, M.C. (2009). Formulation and stability of biodegradable films made from cod gelatin and sunflower oil blends. Food Hydrocolloid 23: 53–61. |
|
[40] | Pérez-Mateos, M., Montero, P., & Gómez-Guillén, M.C. (2009). Formulation and stability of biodegradable films made from cod gelatin and sunflower oil blends. Food Hydrocolloid 23: 53–61. |
|
[41] | Singh, T. P, Chatli, M. K., & Saho, J. (2015). Development of chitosan-based edible films: process optimisation using response surface methodology. Journal of Food Science and Technology 52.5: 2530–2543. |
|
[42] | Singh, T. P, Chatli, M. K., & Saho, J. (2015). Development of chitosan-based edible films: process optimisation using response surface methodology. Journal of Food Science and Technology 52.5: 2530–2543. |
|
[43] | Wang, L., Liu, F., Jiang, Y., Chai, Z., Li, P., Cheng, Y., Jing, H., & Leng, X. (2011). Synergistic antimicrobial activities of natural essential oils with chitosan films. Journal of Agricultural and Food Chemistry 59: 12411–12419. |
|
[44] | Wang, L., Liu, F., Jiang, Y., Chai, Z., Li, P., Cheng, Y., Jing, H., & Leng, X. (2011). Synergistic antimicrobial activities of natural essential oils with chitosan films. Journal of Agricultural and Food Chemistry 59: 12411–12419. |
|
[45] | Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloid 24.8: 770-775. |
|
[46] | Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloid 24.8: 770-775. |
|
[47] | Song, X., Zhou, C., Fu, F., Chen, Z., & Wu, Q. (2013). Effect of high-pressure homogenisation on particle size and film properties of soy protein isolate. Industrial Crops and Products 43: 538-544. |
|
[48] | Song, X., Zhou, C., Fu, F., Chen, Z., & Wu, Q. (2013). Effect of high-pressure homogenisation on particle size and film properties of soy protein isolate. Industrial Crops and Products 43: 538-544. |
|
[49] | Karnnet, S., Potiyaraj, P. & Pimpan, V. (2005). Preparation and properties of biodegradable stearic acid-modified gelatin films. Polymer Degradation and Stability 90.1: 106-110. |
|
[50] | Karnnet, S., Potiyaraj, P. & Pimpan, V. (2005). Preparation and properties of biodegradable stearic acid-modified gelatin films. Polymer Degradation and Stability 90.1: 106-110. |
|
[51] | Tarique, J., Sapuan1, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports 11.1: 13900. |
|
[52] | Tarique, J., Sapuan1, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports 11.1: 13900. |
|
[53] | Torres-León, C., Vicente, A. A., Flores-López, M. L., Rojas, R., Serna-Cock, L., Alvarez-Pérez, O. B., & Aguilar, C. N., (2018). Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT 97: 624-631. |
|
[54] | Torres-León, C., Vicente, A. A., Flores-López, M. L., Rojas, R., Serna-Cock, L., Alvarez-Pérez, O. B., & Aguilar, C. N., (2018). Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT 97: 624-631. |
|
[55] | Santoso, R. A. & Atma, Y. (2020). Physical Properties of Edible Films from Pangasius catfish Bone Gelatin-Breadfruits Starch with Different Formulations. Indonesian Food Science and Technology Journal 3.2: 42-47. |
|
[56] | Santoso, R. A. & Atma, Y. (2020). Physical Properties of Edible Films from Pangasius catfish Bone Gelatin-Breadfruits Starch with Different Formulations. Indonesian Food Science and Technology Journal 3.2: 42-47. |
|
[57] | Thakur, R., Saberi, B., Pristijono, P., Stathopoulos, C. E., Golding. J. B, Scarlett, C. J, Bowyer M, & Vuong Q. V. (2017). Use of response surface methodology (RSM) to optimise pea starch-chitosan novel edible film formulation. Journal of Food Science and Technology 54.8: 2270-2278. |
|
[58] | Thakur, R., Saberi, B., Pristijono, P., Stathopoulos, C. E., Golding. J. B, Scarlett, C. J, Bowyer M, & Vuong Q. V. (2017). Use of response surface methodology (RSM) to optimise pea starch-chitosan novel edible film formulation. Journal of Food Science and Technology 54.8: 2270-2278. |
|
[59] | Saberi, B., Thakur, R., Bhuyan, D. J., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J. & Stathopoulos, C. E. (2017). Development of edible blend films with good mechanical and barrier properties from pea starch and guar gum. Starch - Stärke 69: 1600227. |
|
[60] | Saberi, B., Thakur, R., Bhuyan, D. J., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J. & Stathopoulos, C. E. (2017). Development of edible blend films with good mechanical and barrier properties from pea starch and guar gum. Starch - Stärke 69: 1600227. |
|
[61] | Sandeep, S. L., Madhu Kumar, D. J., Viveka, S. & Nagaraja, G. K. (2012). Preparation and properties of biodegradable film composites using modified cellulose fibre reinforced with PVA. ISRN Polymer Science. 1-8. |
|
[62] | Sandeep, S. L., Madhu Kumar, D. J., Viveka, S. & Nagaraja, G. K. (2012). Preparation and properties of biodegradable film composites using modified cellulose fibre reinforced with PVA. ISRN Polymer Science. 1-8. |
|
[63] | Du, W. X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., Mandrell, R., & Friedman, M. (2009). Antibacterial effects of allspice, garlic, and oregano essential oils in tomato films determined by overlay and vapor-phase methods. Journal of Food Science 74.7: M390–7. |
|
[64] | Du, W. X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., Mandrell, R., & Friedman, M. (2009). Antibacterial effects of allspice, garlic, and oregano essential oils in tomato films determined by overlay and vapor-phase methods. Journal of Food Science 74.7: M390–7. |
|
[65] | Sariningsih, N., Handayani, D., & Kusumaningsih, T. (2019). Development and characterization of the mechanical properties of edible film from ginger starch, chitosan with glycerin as plasticizer to food packaging. IOP Conference Series. Materials Science and Engineering. 600. 012011. 10.1088/1757-899X/600/1/012011. |
|
[66] | Sariningsih, N., Handayani, D., & Kusumaningsih, T. (2019). Development and characterization of the mechanical properties of edible film from ginger starch, chitosan with glycerin as plasticizer to food packaging. IOP Conference Series. Materials Science and Engineering. 600. 012011. 10.1088/1757-899X/600/1/012011. |
|
[67] | Jancy, S., Shruthy, R. & Preetha, R., (2020). Fabrication of packaging film reinforced with cellulose nanoparticles synthesised from jack fruit non-edible part using response surface methodology, International Journal of Biological Macromolecules 142: 63-72. |
|
[68] | Jancy, S., Shruthy, R. & Preetha, R., (2020). Fabrication of packaging film reinforced with cellulose nanoparticles synthesised from jack fruit non-edible part using response surface methodology, International Journal of Biological Macromolecules 142: 63-72. |
|
[69] | Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2005). Mechanical properties of tapioca-starch edible films containing sorbates, LWT - Food Science and Technology 38.6: 631-639. |
|
[70] | Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2005). Mechanical properties of tapioca-starch edible films containing sorbates, LWT - Food Science and Technology 38.6: 631-639. |
|
[71] | Bizymis, A.P., Giannou, V., & Tzia, C. (2022). Improved Properties of Composite Edible Films Based on Chitosan by Using Cellulose Nanocrystals and Beta-Cyclodextrin. Applied Science. 12.8729: 1-17. |
|
[72] | Bizymis, A.P., Giannou, V., & Tzia, C. (2022). Improved Properties of Composite Edible Films Based on Chitosan by Using Cellulose Nanocrystals and Beta-Cyclodextrin. Applied Science. 12.8729: 1-17. |
|
[73] | Fairley, P., Monahan, F. J., German, J. B. & Krochta, J. M. (1996). Mechanical Properties and Water Vapor Permeability of Edible Films from Whey Protein Isolate and N-Ethylmaleimide or Cysteine. Journal of Agricultural and Food Chemistry. 44 .12: 3789-3792. |
|
[74] | Fairley, P., Monahan, F. J., German, J. B. & Krochta, J. M. (1996). Mechanical Properties and Water Vapor Permeability of Edible Films from Whey Protein Isolate and N-Ethylmaleimide or Cysteine. Journal of Agricultural and Food Chemistry. 44 .12: 3789-3792. |
|
[75] | Ekrami, M., & Emam-Djomeh, Z. (2013). Water Vapor Permeability, Optical and Mechanical Properties of Salep-based Edible Films. Journal of Food Processing and Preservation. 4.38: 1812-1820. |
|
[76] | Ekrami, M., & Emam-Djomeh, Z. (2013). Water Vapor Permeability, Optical and Mechanical Properties of Salep-based Edible Films. Journal of Food Processing and Preservation. 4.38: 1812-1820. |
|
[77] | Du W. X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., & Friedman, M. (2008). Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrol-containing edible tomato films. Journal of Food Science 73.7: M378–83. |
|
[78] | Du W. X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., & Friedman, M. (2008). Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrol-containing edible tomato films. Journal of Food Science 73.7: M378–83. |
|
[79] | Azeredo, H. M. C., Mattoso, L. H. C, Wood, D., & Williams, T. G, Avena-Bustillos, R. J., McHugh, T. H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science. 74.5: N31–N35. |
|
[80] | Azeredo, H. M. C., Mattoso, L. H. C, Wood, D., & Williams, T. G, Avena-Bustillos, R. J., McHugh, T. H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science. 74.5: N31–N35. |
|
[81] | Alimi, B. A., Workneh, T. S., & Femi, F. A. (2021). Fabrication and characterisation of edible films from acha (Digitalia exilis) and iburu (Digitalia iburua) starches, CyTA - Journal of Food 19:1, 493-500. |
|
[82] | Alimi, B. A., Workneh, T. S., & Femi, F. A. (2021). Fabrication and characterisation of edible films from acha (Digitalia exilis) and iburu (Digitalia iburua) starches, CyTA - Journal of Food 19:1, 493-500. |
|
[83] | Galus, S., & Kadzińska, J. (2016). Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil. Food Technology and Biotechnology 54.1: 78-89. |
|
[84] | Galus, S., & Kadzińska, J. (2016). Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil. Food Technology and Biotechnology 54.1: 78-89. |
|
[85] | Galus, S., Mikus, M., Ciurzy´nska, A., Domian, E., Kowalska, J., Marzec, A., & Kowalska, H. (2021). The Effect of Whey Protein-Based Edible Coatings Incorporated with Lemon and Lemongrass Essential Oils on the Quality Attributes of Fresh-Cut Pears during Storage. Coatings 11: 745. |
|
[86] | Galus, S., Mikus, M., Ciurzy´nska, A., Domian, E., Kowalska, J., Marzec, A., & Kowalska, H. (2021). The Effect of Whey Protein-Based Edible Coatings Incorporated with Lemon and Lemongrass Essential Oils on the Quality Attributes of Fresh-Cut Pears during Storage. Coatings 11: 745. |
|
[87] | Chakravartula, S.S.N., Soccio, M., Lotti, N., Balestra, F., Dalla Rosa, M., & Siracusa, V. (2019). Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. Materials. 12.2454: 2-19. |
|
[88] | Chakravartula, S.S.N., Soccio, M., Lotti, N., Balestra, F., Dalla Rosa, M., & Siracusa, V. (2019). Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. Materials. 12.2454: 2-19. |
|
[89] | Song, X., Cheng, L., & Tan, L. (2019). Edible iron yam and maize starch convenient food flavoring packaging films with lemon essential oil as plasticisation. Food Science and Technology 39.4: 971-979. |
|
[90] | Song, X., Cheng, L., & Tan, L. (2019). Edible iron yam and maize starch convenient food flavoring packaging films with lemon essential oil as plasticisation. Food Science and Technology 39.4: 971-979. |
|
[91] | Mohamed, A., & Ramaswamy, H. S. (2022). Characterisation of Caseinate–Carboxymethyl Chitosan-Based Edible Films Formulated with and without Transglutaminase Enzyme. Journal of Composite Science 6: 216. |
|
[92] | Mohamed, A., & Ramaswamy, H. S. (2022). Characterisation of Caseinate–Carboxymethyl Chitosan-Based Edible Films Formulated with and without Transglutaminase Enzyme. Journal of Composite Science 6: 216. |
|
[93] | Mohite, A. M., & Chandel, D. (2020). Formulation of edible films from fenugreek mucilage and taro starch. Signature Nature Applied Science. 2:1900. |
|
[94] | Mohite, A. M., & Chandel, D. (2020). Formulation of edible films from fenugreek mucilage and taro starch. Signature Nature Applied Science. 2:1900. |
|
[95] | Cai, J., Lu, W., Kan, Q., Chen, X., Cao, Y., & Xiao, J. (2022). Volatile composition changes of fruits in a biopolymer-coated polyethylene active packaging: Effects of modified atmosphere. Food Research International 152: 110843. |
|
[96] | Cai, J., Lu, W., Kan, Q., Chen, X., Cao, Y., & Xiao, J. (2022). Volatile composition changes of fruits in a biopolymer-coated polyethylene active packaging: Effects of modified atmosphere. Food Research International 152: 110843. |
|
[97] | Ratna, P. R. and Sari, S. P. (2021). Environmental friendly packaging based on rice liquid as edible film: a feasibility study. IOP Conf. Series: Earth and Environmental Science 644.012054: 1-8. |
|
[98] | Ratna, P. R. and Sari, S. P. (2021). Environmental friendly packaging based on rice liquid as edible film: a feasibility study. IOP Conf. Series: Earth and Environmental Science 644.012054: 1-8. |
|
[99] | Ramesh, R., Palanivel, H., Prabhu, S. V., Tizazu, B. Z., & Woldesemayat, A. A. (2021). Process Development for Edible Film Preparation Using Avocado Seed Starch: Response Surface Modeling and Analysis for Water-Vapor Permeability. Advances in Materials Science and Engineering. 7859658: 1-7. |
|
[100] | Ramesh, R., Palanivel, H., Prabhu, S. V., Tizazu, B. Z., & Woldesemayat, A. A. (2021). Process Development for Edible Film Preparation Using Avocado Seed Starch: Response Surface Modeling and Analysis for Water-Vapor Permeability. Advances in Materials Science and Engineering. 7859658: 1-7. |
|
[101] | Alkan, D. & Yemenicioglu, A. (2016). Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids. 55: 1–10. |
|
[102] | Alkan, D. & Yemenicioglu, A. (2016). Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids. 55: 1–10. |
|
[103] | Fagundes, C., Palou, L., Monteiro, A. R., & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae 193: 249–257. |
|
[104] | Fagundes, C., Palou, L., Monteiro, A. R., & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae 193: 249–257. |
|
[105] | Zhang, P., Zhao, Y., & Shi, Q. (2016). Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydrate Polymers 153: 345–355. |
|
[106] | Zhang, P., Zhao, Y., & Shi, Q. (2016). Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydrate Polymers 153: 345–355. |
|
[107] | Bugatti, V., Brachi, P., Viscusi, G. & Gorrasi, G. (2019). Valorization of Tomato Processing Residues Through the Production of Active Bio-Composites for Packaging Applications. c 6: 34. |
|
[108] | Bugatti, V., Brachi, P., Viscusi, G. & Gorrasi, G. (2019). Valorization of Tomato Processing Residues Through the Production of Active Bio-Composites for Packaging Applications. c 6: 34. |
|
[109] | Freitas, J. A. M., Mendonça, G. M. N., Santos, L.B.; Alonso, J. D., Mendes, J. F., Barud, H. S., & Azeredo, H. M. C. (2022). Bacterial Cellulose/Tomato Puree Edible Films as Moisture Barrier Structures in Multicomponent Foods. Foods 11.2336. |
|
[110] | Freitas, J. A. M., Mendonça, G. M. N., Santos, L.B.; Alonso, J. D., Mendes, J. F., Barud, H. S., & Azeredo, H. M. C. (2022). Bacterial Cellulose/Tomato Puree Edible Films as Moisture Barrier Structures in Multicomponent Foods. Foods 11.2336. |
|
[111] | Oliveira, E. F. R., Bonfim, K. S., Aouada, F. A., Azeredo, H. M. C., & Moura, M. R. (2023). A sustainable approach on the potential use of kale puree in edible wraps. Applied Food Research 3.1: 100261. |
|
[112] | Oliveira, E. F. R., Bonfim, K. S., Aouada, F. A., Azeredo, H. M. C., & Moura, M. R. (2023). A sustainable approach on the potential use of kale puree in edible wraps. Applied Food Research 3.1: 100261. |
|
[113] | Shanbhag, C., Shenoy, R., Shetty, P., Srinivasulu, M., & Nayak, R. (2023). Formulation and characterization of starch-based novel biodegradable edible films for food packaging. Journal of Food Science and Technology 60, 2858–2867. |
|
[114] | Shanbhag, C., Shenoy, R., Shetty, P., Srinivasulu, M., & Nayak, R. (2023). Formulation and characterization of starch-based novel biodegradable edible films for food packaging. Journal of Food Science and Technology 60, 2858–2867. |
|