American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: https://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2023, 11(5), 183-188
DOI: 10.12691/ajfst-11-5-3
Open AccessArticle

Numerical Study of Thermal Transfers in a Hohenheim-Type Mixed Solar Drying System Integrating Daily Solar Irradiation Data

Kokou Agbossou1, , Komi Apélété Amou1, Tchamye T. E. Boroze1, Kossi Napo1 and Andre D.L. Batako2

1Laboratoire sur l’Energie Solaire, Département de physique, Faculté des Sciences, Université de Lomé, BP : 1515 Lomé, Togo

2Genaral Engineering Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK

Pub. Date: November 21, 2023

Cite this paper:
Kokou Agbossou, Komi Apélété Amou, Tchamye T. E. Boroze, Kossi Napo and Andre D.L. Batako. Numerical Study of Thermal Transfers in a Hohenheim-Type Mixed Solar Drying System Integrating Daily Solar Irradiation Data. American Journal of Food Science and Technology. 2023; 11(5):183-188. doi: 10.12691/ajfst-11-5-3

Abstract

This study focuses on a drying system consisting of a flat air solar collector coupled longitudinally to a drying chamber in the climatic conditions of tropical regions and the case of Togo was presented. The study was carried out using mathematical models obtained by writing the laws of energy conservation in the different components of the system. Simulations were achieved using experimental measurements of daily solar radiation and ambient temperature on a typical day in Lomé (Togo). The results highlight the importance of solar radiation and the use of fins on the performance of the drying system. It reveals that an optimal range of solar daily radiation for the proposed insulator for drying is 400 W/m2 to 1000W/m2, with an ambient air speed of 1.5 m/s to 4.5 m /s and a temperature variation of 20°C to 45°C.

Keywords:
solar drying modeling simulation performance

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  A. Bedri, Solar Thermal Energy Use as a Substitute for Residential Building in Ethiopia, California state University, Sacramento, 2013.
 
[2]  S. A. Mekonen, Solar Energy Assessment in Ethiopia: Modeling and Measurement, Addis Ababa University, 2007.
 
[3]  A. Goetzberger and V. U. Hoffmann, Photovoltaic Solar Energy Generation, vol. 112, Springer Science & Business Media, 2005.
 
[4]  G. D. RAI, Solar Energy Utilisation, Kanna Publishers, Delhi, 4th edition ed. edition, 2000.
 
[5]  A. J. Mobolade, N. Bunindro, D. Sahoo, and Y. Rajashekar, “Traditional methods of food grains preservation and storage in Nigeria and India,” Annals of Agricultural Sciences, vol. 64, no. 2, pp. 196–205, 2019.
 
[6]  C. Loha, R. Das, and B. Choudhury, “Evaluation of air drying characteristics of sliced ginger (Zingiber officinale) in a forced convective cabinet dryer and thermal conductivity measurement,” Journal of Food Processing and Technology, vol. 03, no. 06, 2012
 
[7]  A. A. C. A. Ogunlade, “Physical properties of ginger (Zingiber officinale),” Global Journal of Science Frontier Research, vol. 14, no. 8, 2014.
 
[8]  A. A. Gatea, “Performance evaluation of a mixed-mode solar dryer for evaporating moisture in beans,” Journal of Agricultural Biotechnology and Sustainable Development, vol. 3,no. 4, pp. 65–71, 2011.
 
[9]  S. Oudjedi “Theoretical and experimental study of a solar air collector intended for drying”, Renewable Energy Research Unit in the Saharan environment, Adar, Algeria 2008
 
[10]  McAdams W.H. “ Heat transmission”,3rd ed. Mc. Graw Hill, New York, 1954.
 
[11]  F. Mokhtar, «Etude théorique et expérimentale d’un capteur solaire à air destiné au séchage», Unité de Recherche en Energie Renouvelable en milieu Saharien, B.P478, Route de Reggane, Adar, Algérie 2008.
 
[12]  S. Youcef-Ali» Etude numérique et expérimentale des séchoirs solaires indirects à convection forcée : Application à la pomme de terre», Thèse de Doctorat, Université de Valenciennes et du Hainaut-Cambrésis, France, 2001.
 
[13]  Swinbank WC “Long–Wave radiation from clear skies”. QJ Roy Meteor Soc 89, 1963.
 
[14]  M. Daguenet, «Les Séchoirs Solaires, Théories et pratique», Unesco, 1985.
 
[15]  T. Letz, «Modélisation et dimensionnement économique d’un système de chauffage domestique bi-énergie», Thèse de Doctorat INSA Lyon, 1985.
 
[16]  Aissani Larbi «Study and construction of a solar dryer for fruits and vegetables» Master's dissertation, University of Constantine, 1988
 
[17]  Assefa T.” Fabrication and Performance Evalution of Solar Tunnel Dryer for Ginger Drying” International Journal of Photoenergy
 
[18]  Assefa tesfaye & al. Fabrication and Performance Evaluation of Solar Tunnel dryer for Ginger Drying, International Journal of Photoenergy,pg.13, 2022
 
[19]  C. T. Kiranoudis, Z. B. Maroullis, E. Tsami and D. Marinos-Kouris, “Equilibrium Moisture Content and Heat of Desorption of Some Vegetables,” Journal of Food Engineering, Vol. 20, No. 1, 1993, pp. 55-74.
 
[20]  Zomorodian, A., et al. (2007). Optimization and evaluation of a semicontinuous solar dryer for cereals (rice, etc.). Desalination, 209, 129–135.
 
[21]  Intawee, P., & Janjai, S. (2011). Performance evaluation of a largescale polyethylene covered greenhouse solar dryer. International Energy Journal, 12, 39–52.