American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: Editor-in-chief: Hyo Choi
Open Access
Journal Browser
American Journal of Food Science and Technology. 2023, 11(5), 162-174
DOI: 10.12691/ajfst-11-5-1
Open AccessArticle

Impact of Maturity Stage on Physicochemical, Phytochemical Characteristics and Antioxidant Activity of Seeds of Phaseolus Lunatus (Fabaceae) Three Cultivars Consumed in Ivory Coast

Tchumou Messou1, , Wohi Maniga2, Oupoh Bada Bedos3 and Tano Kablan3

1Training and Resarch Unit of Agriculture, Halieutic Resources, Agro-industry, University of San-Pedro, BPV 1800, San-Pedro, Ivory Coast

2Department of Biochemistry-Genetics, Peleforo Gon Coulibaly University, Korhogo, Ivory Coast

3Training and Resarch Unit of Food Science and Technology, Nangui Abrogoua University, 02 BP: 801 Abidjan 02, Abidjan, Ivory Coast

Pub. Date: October 20, 2023

Cite this paper:
Tchumou Messou, Wohi Maniga, Oupoh Bada Bedos and Tano Kablan. Impact of Maturity Stage on Physicochemical, Phytochemical Characteristics and Antioxidant Activity of Seeds of Phaseolus Lunatus (Fabaceae) Three Cultivars Consumed in Ivory Coast. American Journal of Food Science and Technology. 2023; 11(5):162-174. doi: 10.12691/ajfst-11-5-1


To enable growers and provide consumers with Phaseolus lunatus (L.) seeds of good nutritional quality, this study was carried out on Phaseolus lunatus seeds obtained from pods of white, red and black cultivars harvested at stage 1 (32 days), stage 2 (38 days), stage 3 (45 days) and stage 4 (52 days) after fertilisation. Weight of pods and seeds at harvest decreases from stage 1 to stage 4 of maturity. Major biochemical compounds such as crude protein, carbohydrates and lipids of seeds are highest at stage 4 (52 days) of maturity. Seeds of the black cultivar are richer in protein, with a content varying between 17.51 ± 0.17 and 21.21 ± 0.18 % at stage 4 (52 days) of maturity. Seeds of black cultivar produced at stage 4 (52 days) are rich in vitamins B1, B2, B6 and B9 and antioxidants such as carotenoids and flavonoids. These seeds contain high levels of vitamins B6 (pyridoxine) and B9 (folic acid). The concentrations of these vitamins vary from 1900 to 2000.03 μg/100g of dry matter and from 599.93 ± 0.86 to 600 ± 1.00 μg/100g of dry matter respectively. P. lunatus seeds obtained at stage 4 (52 days) were rich in minerals. The Na/K ratio of white, red and black bean seeds varies from 0.04 to 0.05, i.e. less than 1. As a result, eating these Phaseolus lunatus bean seeds would probably reduce high blood pressure. In conclusion, Phaseolus lunatus seeds have good nutritional quality, the pods must be harvested at stage 4 (52 days) after fertilisation in order to satisfy consumers.

maturity physiology pods nutrients phaseolus lunatus

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Chávez-Mendoza, C.; Sánchez, E. (2017). Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules, 22, 8. [CrossRef] [PubMed]
[2]  Gutierrez-Zavala, A.; Ledesma-Rivero, L.; García-García, I.; Grajales-Castillejos, O. (2007). Capacidad antioxidante total en alimentos convencionales y regionales de Chiapas, México. Rev. Cubana Salud Pública, 33, 1.
[3]  Tchumou. (2017): Ethnobotanical survey and physicochemical characterization of bean seeds, Phaseolus lunatus (Fabaceae) consumed in the South and East of Côte d'Ivoire according to maturity level and cooking time, 224p.
[4]  El-Gohery, S. (2021). Effect of different treatments on nutritional value of lima bean (Phaseolus lunatus) and its utilization in biscuit manufacture. Food Nutr. Sci. 12: 372-391.
[5]  Tope, A.K. 2014. Effect of fermentation on nutrient composition and anti-nutrient contents of ground Lima bean seeds fermented with Aspergillus fumigatus, Rhizopus stolonifer and Saccharomyces cerevisiae. Int. J.
[6]  Farinde, E.O., O.T. Olanipekun and R.B. Olasupo. (2018). Nutritional composition and anti-nutrients content of raw and processed lima bean (Phaseolus Lunatus). Ann. Food Sci. Technol. 19: 250-2.
[7]  Farinde, E., V. Obatolu and S. Fasoyiro. (2017). Microbial, nutritional and sensory qualities of baked cooked and steamed cooked lima beans. Am. J. Food Sci. Nutr. 5:156-161.
[8]  Bonita, L.C., G.A. Shantibala-Devi and C. H. Brajakishor Singh. (2020). Lima Bean (Phaseolus Lunatus L.) A Health Perspective. Int. J. Sci. Technol. Res. 9:5638-5649.
[9]  Darbie M.G., Williams T.K. and George B. (1999). Lima beans, commercial vegetable production. Georgia Extension services publication, Circular, pp : 13-17.
[10]  Daisy E.K. (1979). Food legumes TPI crop product digest No 3. Tropical Product Institute, London.
[11]  Van de Maessen, L.G.J and S. Sadikin. (1989). Plant resources of South Eastern Asia., (1):56-60.
[12]  Lyman S.M, Baudoin J.P and Hildago R. (1985).Lima beans (Phaseolus lunatus) In: Grain Legume Crops. RJ Summerfield and EH Roberts (Eds.) London: Williams Collins sons & Co Ltd LondonUnited Kingdom.: P.477-519.
[13]  Mehta C.J., Kuhad M.S., Sheoran I.S. and Nandwal A.S. (1993). Studies on seed development and germination in chickpea cultivars. Seed Res., 21(2): 89-91.
[14]  Tekrony DM, Egli DB. (1997). Accumulation of seed vigour during development and maturation.
[15]  Ghassemi-Golezani K, Hosseinzadeh-Mahootchy A. (2009). Changes in seed vigour of faba bean (Vicia faba L.) cultivars during development and maturity. Seed Sci. Tech 37: 713-720.
[16]  Chinma C.E. and Igyor M.A. (2007). Micro-nutriments and anti-nutritional content of select tropical vegetables grown in south- east, Nigeria. Nig. Food., 25.111-115.
[17]  Papadakis S.E., Abudal-Malek S., Kamden R.E. and Yam K.L. (2000). A versatile and inexpensive techniques for measuring colour of foods. Food Technol. 54 (12): 48-51.
[18]  Al-Said F.A., Opara U.L. and Al-Yahyai R.A. (2009). Physico-chemical and textural quality attributes ofpomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. J. Food Eng. 90: 129–134.
[19]  Yellavila, S.B., J.K. Agbenorhevi, J.Y. Asibuo and G.O. Sampson. (2015). Proximate composition, minerals content and functional properties of five lima bean accessions. J. Food Secur. 3: 69-74.
[20]  AOAC. (1990). Official methods of analysis of the Association of Official Analytical Chemists, 15th ed, Washington DC, 1230p.
[21]  Bernfeld. (1955). Amylase β and α, In: method in enzymology 1, Colowick S.P. and Kaplan N.O., Academic Press, pp149-154.
[22]  FAO/INFOODS. (2015). FAO/INFOODS Guidelines for verifying food composition data before publication of a user table/database-Version 1.0. FAO, Rome.
[23]  Fatima Ismail., Farah N., Talpur. & Memon A.N. (2013). Determination of Water Soluble Vitaminin Fruits and Vegetables Marketed in Sindh Pakistan. Pakistan Journal Nutrition, 12: 197-199.
[24]  Atwater and Rosa. (1899). A new respiratory colorimeter and the conservation of energy in human body. Physiol. Rev., 9: 214-251.
[25]  Food and Agriculture Organization of the United Nations. (2011). Dietary Protein Quality Evaluation in Human Nutrition. Report of FAO Expert Consultation, Auckland, 31 March-2 April 2011, 27.
[26]  Bainbridge Z.K. Tomlins & A. Westby. 1996. Analysis of condensed tannins using acidified vanillin. Journal Food Science Agriculture, 29: 77-79.
[27]  Latta M. & Eskin M. (1980). A simple method for phytate determination. Journal Agriculture and Food Chemistry, 67: 1313-1315.
[28]  Day R. A. & Underwood A. L. (1986). Analisis Kimia Kuantitatif, Edisi Kelima, Penerbit Erlangga, Jakarta Hal, 388- 390.
[29]  Brand-Williams, W., Cuvier, M. E., and Berset, C. (1995). “Use of a free radical method to evaluate antioxidant activity”. Lebens-Wissen Technology, 28. 25-30.
[30]  Treibitsh T., Goldschmidt E.E. & Riov J. (1993). Ethylene induced de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme in citrus fruit peel. Processing National Academy Science USA, 90: 9441-9445.
[31]  Ketsa S., Phakawatmongkol W. & Subhadrabhandu S. (1999b). Peel enzymatic activity and color changes in ripening mango fruit. Journal. Plant physiology, 154: 363-366.
[32]  Guis M., Botondi R., Ben-Amor M., Ayub R., Bouzayen M., Pech J.C. & Latché A. (1997). Ripening-associated biochemical traits cantaloupe charentais melons expressing an antisense ACC oxidase transgene-J. American Society Horticulture Sciences, 122: 748-751.
[33]  Azuma R., Kurata H., Adachi M. & Shimokawa K. (1999). Degreening of citrus unshiu fruit via ethylene-induced soluble chlorophyllase. Journal Japan Society Hortical Science, 68: 558-562.
[34]  Sreeramulu N., Tesha A.J. & Kapuya J.A. (1992). Some biochemical changes in developing seeds of bambarra groundnut (Voandzeia subterranea Thouars). Indian Journal Plant Physiology, 35: 191-194.
[35]  Egli D.B. (1997). Seed Biology and the Yield of Grain Crops. CABI International. Wallingford 178pp.
[36]  Germain P. & Linden G. (1981). Activités enzymatiques. In: Deymier, B., Multon, J.L., Simon, D (eds) Analyse des constituants alimentaires. Techniques d’Analyse et de contrôle dans les industries agrolalimentaires, Tec. Et Doc Lavoisier, Paris, 4: 211-244.
[37]  Apata D.F., & A.D. Ologhobo. (1994b). Proximate composition of some nutritionally valuable minerals and functional properties of three varieties of Lima beans (Phaseolus lunatus L.) flour. International Journal Food Sciences Nutrition, 43: 181-191.
[38]  Vadivel V. & Janardhanan K. (2000). Chemical composition of the underutilized legume Cassia hirsuta L. Plant Foods Human Nutrition, 55: 369-381.
[39]  Granito M., Brito Y. & Torres A. (2007). Chemical composition, antioxidant capacity and functionality of raw and processed (Phaseolus lunatus). Journal Sciences Food Agriculture, 87: 2801–2809.
[40]  Pious Soris Tresina. & Veerabahu Ramasamy Mohan. (2012). Comparative assement on the nutritional and antinutritional attributes of the underutilized legumes, Canavalia gladia (JACQ.) DC, Erythrina indica LAM and Abrus precatorius L. Tropical Subtropical Agroecosystem, 15: 539–556.
[41]  Bhuiyan M. A. H. (2004). Evaluation of introducing mungbean into cereal based cropping Pattern for sustainable soil fertility and productivity. Ph.D. Thesis. Department of Soil Science Bangladesh Agricultural University, Mymensingh, Bangladesh 1-217p.
[42]  Baud S., Boutin J. P., Miquel M., Lepiniec L. & Rochat C. (2002). An integrated over view of seed development in Arabidopsis thaliana ecotype WS Plant Physiology. Biochemistry; 40: 151–160.
[43]  Kamalak A., Canbolat O., Gurbuz Y., Erol A. & Ozay O. (2005). Effect of maturity on the chemical composition, in vitro and in situ dry matter degradation of tumbleweed hay (Gundelia tournefortii L.) Small Ruminant Reserch, 58(2): 149-156.
[44]  Bravo L., Siddhuraju P. & Sauvo-Calixto F. (1999). Composition of under exploited Indian pulses. Comparison with common legumes. Food Chemistry, 64: 185-102.
[45]  Kalidass C. & Mahapatra A. K. (2014). Evaluation of the proximate and phytochemical compositions of an underexploited legume Mucuna pruriens var. utilis (Wall ex Wight) L.H. Bailey. International Food Research Journal, 21: 303-308.
[46]  De la Vega A. & Sotelo A. (1986). The nutritional quality and toxin content of wild and cultivated lima beans (Phaseolus lunatus) Qual. Plant-Plant Foods Hum. Nutrition, 36: 75-83.
[47]  Rao N., Deosthale B.S., Pant Y.G. & K.C. (1989). Nutritive Value of Indian Foods. Hyderabad, India: National Institute of Nutrition, Indian Council of Medical Research.
[48]  Rajaram N. & Janardhanan K. (1993). Biochemical composition of Lima bean (Phaseolus lunatus L.) seeds. Ibid, 21: 39-43.
[49]  Vijayakumari K., Siddhuraju P. & Janardhanan K. (1993b). Nutritional and antinutritional properties of certain underexploited legume seeds. International Journal Food Science Nutrition, 44: 181-189.
[50]  Kalidass C. & Mohan V.R. (2012b). Nutritional composition and anti-nutritional of factors of little-known species Vigna, Tropical and Subtropical Agroecosystems, 15: 525–538.
[51]  Miller-Cebert R.L., Sistani N.A. & Cebert E. (2009a). Comparative mineral composition among canola cultivars and other cruciferous leafy greens. Journal Food Comp Anal, 22: 112-116.
[52]  Ayaz A.F., Glew R.H., Millson M., Huang H.S., Chuang L.T., Sanz C. & Hayirlioglu Ayaz S. (2006). Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.) Food Chemistry, 96: 572–579.
[53]  Russel E.W. (1973). Soil conditions and plant growth. Supergene Zone, M. 19p.
[54]  Tirasoglu E., Cevik U., Ertugrul B., Apaydin G., Baltas H. & Ertugrul M. (2005). Determination of trace elements in cole (Brassica oleraceae var. acephale) at Trabzon region in Turkey. J. Quantitative, Spectroscopy, Radiative Transfer, 94: 181-187.
[55]  Nunez-gonzalez M. A. & al. (2001). Genotypic variability in absorption of minerals among bean (Phaseolus vulgaris L.) cultivars exposed to low nutrient stress. Crop Research, 22 (3): 408-423.
[56]  Sadiq M. & Hussain G. (1994). Effect of chelate fertilizers on dry matter and metallic composition of bean plants in a pot experiment. Journal Plant Nutrition, 17: 1477-1488.
[57]  Carbonell-Barrachina A. A., Burlo F. & Mataix J. (1998). Response of bean micronutrient nutrition to arsenic and salinity. Journal of Plant Nutrition, 21 (6): 287-299.
[58]  Nieman D.C., Butterworth. & Nieman C.N. (1992). Nutrition, WmC. Brown publishers. Dubugue, USA, 237-312pp.
[59]  Siddhuraju P., Becker K. & Makkar H.S. (2001). Chemical composition, protein fractionation, essential amino acid potential and antimetabolic constituents of an unconventional legume, Gila bean (Entada phaseoloides Merrill.) seed kernel. Journal Science of Food Agriculture, 82: 192–202.
[60]  Geissler C.A. & Powers H.J. (2005). Human Nutrition. Elsevier, Churchull, Livingston.
[61]  Toma R.B. & Tabeckia M.M. (1979). HPLC analysis of B-vitamins in rice and rice products. Journal Food Science, 44:263-266.
[62]  FAO/WHO. (2002). Human vitamin and mineral requirements. Report of a joint FAO/WHO expert consultation, Bangkok, Thailand. World Health Organization Food and Agriculture Organization of the United Nations Rome (Accessed 2010.07.04).
[63]  Luthria D. L. & Pastor-Corrales M. A. (2005). Phenolic acid content of fifteen dry edible beans (Phaseolus vulgaris L.) varieties. Journal of Food Composition and Analysis, 19: 205- 211.
[64]  Da Silva E.J.A., Oliveira A.B., Lapa A.J. (1994). Pharmacological evaluation of the antiinflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. Journal Pharm Pharmacological, 46(2): 118-220.
[65]  Read, M. A., (1995). Flavonoids: naturally occurring anti-inflammatory agents Vascular. Am. Journal. Pathological, 147(2) : 235-7.
[66]  Oomah B. D., Cardador-Martinez A. & Loarca-Pina G. (2005). Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L.). Journal of the Science of Food and Agriculture, 85: 935-942.
[67]  FAO/WHO. (1992). Codex standard for Edible cassava flour-African Regional standard. Rome: FAO/WHO Food Standards Programme.
[68]  Montgomery R.D. (1980). Cyanogens. In: Toxic constitutes of Plant Food Stuffs, 2nd edn, ed. IE Liener, New York: Academic Press 158 – 160pp.
[69]  Loewus F. (2002). Biosynthesis of Phytate in Food Grains and Seeds. In: Food Phytates (Eds.) Reddy N. R. and S. K. Sathe, CRC Press. Florida, USA: pp.53–61.
[70]  Raboy V. (1990). The biochemistry and genetics of phytic acid synthesis in higher plants. In: Morre, E.J.; Boss, W.S. and Loewus, F.A. Inositol metabolism in plants. New York: John Wiley and Sons, 1: 55-76.
[71]  Lott J. N. A., Randal P. J., Goodchild D. J. & Craig S. (1985). Occurrence of globoid crystals in cotyledonary bodies of Pisum sativum as influenced changes in experimentally induced changes in Mg, Ca and K contents of seeds. Australian Journal Plant Physiology, 12: 341-353.
[72]  Wanasundera J.P.D. & Ravindran G. (1994). Nutritional assessment of yam (Dioscorea alata) tubers. Plant Foods for Human Nutrition, 46: 33-39.
[73]  Alves R. E., Bezerra F. C., Abreu F. A. P. & Filgueirras H. A. C. (1999). Development and maturation of apple of early dwarf cashew tree CCP-76. Acta Horticulturae, 485: 225 – 230.
[74]  Oulaï, S. F.; Koné, F. M. T.; Amedée, A. P.; Gonnety, J. T.; Faulet, B. M.; Kouamé, L. P., 2014. Impact of cooking times on some nutritional and anti-nutritional factors of Ivorian breadfruit (Artocarpus altilis) flour. Int. J. Rec. Biotech., 2 (3): 34-46.
[75]  Davis A. M. (1981). The oxalate, tannin, crude fiber, and crude protein composition of young plants of some Atriplex species.J. Range Manage, 34:329-331.
[76]  Munro A. & Bassir D. (1969). Oxalate in Nigerian vegetables. West African journal of biological and applied chemistry, 12: 14-18.
[77]  Narjes Zamani., Manijeh Mianabadi*. & Ahmad Abdolzadeh. (2011). Changes in anti-oxidant activity of Thymus transcaspicus (Klokov) during growth and developmental stages Journal of Cell and Molecular Research, 3 (1):12-18.
[78]  Reynoso C., Ramos G. & Loarca P. (2006). Bioactive components in common beans (Phaseolus vulgaris L.). Research Signpost, 2: 37- 61.
[79]  Viera R.F., Grayer R.J. & Paton A.J. (2003). Chemical profiling of Ocimum americanum using external flavonoids. Phytochemistry, 63: 555-67.
[80]  Horbowicz M., Kosson R., Grzesiuk A. & Dębski H. (2008). Anthocyanins in fruit and vegetables their occurrence, analysis and role in human nutrition. Vegetable Crops Res Bull, 68: 5–22.
[81]  Liu R.H. (2004). Potential synergy of phytochemicals in cancer prevention : mechanism of action. Journal Nutrition 134: 34795-34855.
[82]  Limasset B., Le Doucen C., Dore J.-C., Ojasoo T., Damon M. & Crastes de Paulet A. (1993). Effects of flavonoids on the release of reactive oxygen species by stimulated human neutrophils. Multivariate analysis of structure-activity relationships (SAR). Biochemical Pharmacological, 46: 1257-1271.
[83]  Sandberg A.S. (2002). Bioavailability of minerals in legumes. Bristish Journal of Nutrition, 88:281-285.
[84]  Coelho J.V. & Lajolo F.M. (1993). Total phenolic compounds and tannins in seeds of Phaseolus vulgaris during development. Arch Latinoam Nutrition, 43: 61–65.