American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: https://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2023, 11(4), 141-149
DOI: 10.12691/ajfst-11-4-3
Open AccessArticle

Preservation of Mangoes (Mangifera Indica L. Variety "Kent") by Edible Coating Based Cassava Starch, Coconut Microfiber and Garcinia Kola Oil

Adjouman Yao Désiré1, 2, , Kouamé Kohi Alfred1, 2, Diabate Massogbè1, Doh Amenan Aline1, Kossonou Kouassi Ezéchiel1, Nindjin Charlemagne1, 2 and Tetchi Fabrice Achille1

1UFR des Sciences et Technologies des Aliments, Université NANGUI ABROGOUA, Abidjan, 02 BP 801 Abidjan 02, Côte d'Ivoire. Laboratoire de Biochimie Alimentaire et de Technologies des Produits Tropicaux-STA.

2Chercheur associé au Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS-CI)

Pub. Date: October 12, 2023

Cite this paper:
Adjouman Yao Désiré, Kouamé Kohi Alfred, Diabate Massogbè, Doh Amenan Aline, Kossonou Kouassi Ezéchiel, Nindjin Charlemagne and Tetchi Fabrice Achille. Preservation of Mangoes (Mangifera Indica L. Variety "Kent") by Edible Coating Based Cassava Starch, Coconut Microfiber and Garcinia Kola Oil. American Journal of Food Science and Technology. 2023; 11(4):141-149. doi: 10.12691/ajfst-11-4-3

Abstract

The preservation of mangoes is limited by rapid ripening which leads to a change in the physicochemical and organoleptic properties of the fruit. In this study, edible coating was chosen as an alternative method to preserve the quality attributes of the ʹʹKentʺ mango. The objective was to preserve the mango ʺKentʺ with coatings based on cassava starch, coconut fibre and Garcinia kola oil. The mangoes after being collected and cleaned were subjected to coating and stored for 30 d with evaluations every 5 d at room temperature (25 ± 2°C) and under refrigeration at 13°C. The results showed that the coating significantly reduced the loss of mangoes during storage. There was no significant difference in the weight loss of coated and uncoated mangoes stored at 13°C during the 30 d of storage. The soluble solids content increased significantly during storage from 15.55 ± 0.25 on d5 to 15.75 ± 0.62 on 15 d for coated mangoes stored at room temperature, while at 13°C it increased from 17 ± 0.13 on 5 d to 20 ± 0.56 on 30 d. The ascorbic acid (vitamin C) content decreased during the thirty days of storage. At 13°C, it decreased from 228.62 ± 2.12 mg/100g on 5 d to 142.5 mg g-1 on 30 d in coated mangoes. The sensory profiles of the coated mangoes stored at room temperature and under refrigeration at 13°C showed good conservation of organoleptic properties with a sweet taste, good firmness, and good resistance to chewing. The coating technology used resulted in better preservation of most of the physicochemical and sensory characteristics of the mangoes ʺKentʺ during the 30 d of storage.

Keywords:
mango starch post-harvest losses edible coatings Garcinia kola coconut fibre

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Tuo Y., Coulibaly D., Kone M., Coulibaly N., & Koua H. (2020). Optimisation de la production de la mangue dans les villes de karakoro et kolokaha (nord de la côte d’ivoire) par l’installation de rucher dans des vergers de manguiers. Rev. ivoir. sci. technol., 36, 11-25.
 
[2]  Paull R. E., & Duarte O. (2011). Tropical Fruits, 2nd Edition Volume 1, Crop production science in horticulture series. 366p.
 
[3]  Zafar T. A., & Sidhu. J. S. (2017). Composition and Nutritional Properties of Mangoes. In J. K. B. and J. S. S. Muhammad Siddiq (Ed.), Handbook of Mango Fruit: Production, Postharvest Science, Processing Technology and Nutrition 1st ed. Oxford: John Wiley & Sons Ltd, 217-236.
 
[4]  Touré A., Soumahoro S., Kouamé M. L., Tuo C. D., Zoro A. F., & Soro Y.R. (2020). Morphological and physicochemical parameters of three mango (Mangifera Indica L) Varieties Exported In North of Ivory Coast. EAS J Nutr Food Sci, 2(5), 298-303.
 
[5]  FIRCA (2014). Présentation filières fruitières. La filière du progrès n°13 du 1er trimestre 2014. 48p.
 
[6]  Kouassi A. O. (2012). Revue nationale pour identifier les initiatives de valorisation non alimentaire de la mangue en Côte d’Ivoire. Revue nationale, 12(3), 5-43.
 
[7]  FIRCA (2011). Répertoire de technologies et de procédés de transformation de la mangue et l’ananas, 58-61.
 
[8]  Kouamé M. L, Kouamé A. K., Ouattara L., N’guessan F. K., Alloue -Boraud M. W., & Dje. K. M. (2020). Contraintes liées à la production et à la commercialisation des mangues (Mangifera indica) en Côte d’Ivoire: cas des variétés exportées vers l’Europe. Afrique science, 7(3), 16-27.
 
[9]  Onyeani C., & Osunlaja S. (2012). Comparative Effect of Nigerian Indigenous Plants In The Control of Anthracnose Disease of Mango Fruit. Int. J. Food Sci. Technol., 1, 80-85.
 
[10]  Castillo S., Navarro D., Zapata P. J., Guillen F., Valero M., Serrano D., & Martinez-Romero. (2010). Antifungal efficacy of Aloe vera in vitro and its use as a postharvest treatment to maintain postharvest table grape quality. Postharvest Biol. Technol., 57(3), 183-188.
 
[11]  Martínez-Romero, D., Alburquerque, N., Valverde, J. M., Guillén, F., Castillo, S., Valero, D., & Serrano, M. (2006). Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: a new edible coating. Postharvest Biology and Technology, 39(1), 93-100.
 
[12]  Ahmed M. J., Singh Z., & Khan A. S. (2009). Postharvest Aloe vera gel‐coating modulates fruit ripening and quality of ‘Arctic Snow’nectarine kept in ambient and cold storage. Int. J. Food Sci., 44(5), 1024-1033.
 
[13]  Ding P. et Lee Y. (2019). Use of essential oils for prolonging postharvest life of fresh fruits and vegetables: International Food Research Journal, P. (363- 366).
 
[14]  Nor S. M., & Ding P. (2020). Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Res. Int., 134, 109208.
 
[15]  Ungo-Kore H. Y., Ibrahim Y. K. E., & Tytler. B. A. (2019). Anti-dermatophytic activity of hexane extracts of Azadirachta indica A. Juss. Afr. J. Microbiol. Res., 13(26), 421-429.
 
[16]  Rokbi M., Osmani. H., & Benseddiq. N. (2011). Eefect of chemical treatment on flexure proprieties of natural fiber-reinforced polyester composite. Procedia Eng., 10, 2092-2097.
 
[17]  Adjouman Y. A. (2017). Films composites à base d’amidon de manioc : formulations, propriétés et application à la production d’emballages biodégradables. Thèse de Doctorat. Abidjan, Côte d’Ivoire. 235p.
 
[18]  Silué Y., Nindjin C., Cissé H., Kouamé K. A., Amani N. G, Mbéguié-A-Mbéguié D., Lopez-Lauri F., & Tano. K. (2022). Hexanal application reduces postharvest losses of mango (Mangifera indica L. variety "Kent") over cold storage whilst maintaining fruit quality. Postharvest Biol. Technol., 189, 111930.
 
[19]  Athmaselvi V. Sumitha P., & Revathy B. (2013). Development of Aloe vera based edible coating for tomato. Int Agrophys, 27(4), 369-375.
 
[20]  AFNOR (Association française de normalisation). (1982). Recueils de normes françaises. Détermination du taux d’humidité et de la matière sèche dérivés des fruits et légumes.
 
[21]  Pongracz G., Weiser H., & Matzinger D. (1971). Tocopherols- Antioxydant. Food Sci. Technol., 97(3), 90-104.
 
[22]  Lateur M., Planchon V., & Moons E. (2001). ´Evaluation par l’analyse sensorielle des qualités organoleptiques d’anciennes variétés de pommes. Biotechnol. Agron. Soc. Envir., 180-188.
 
[23]  Ranjith, F. H., Adhikari, B., Muhialdin, B. J., Yusof, N. L., Mohammed, N. K., Ariffin, S. H., & Hussin, A. S. M. (2022). Peptide-based edible coatings to control postharvest fungal spoilage of mango (Mangifera indica L.) fruit. Food Control, 135, 108789.
 
[24]  Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food research international, 42(7), 762-769.
 
[25]  Ali, A., Muhammad, M. T. M., Sijam, K., & Siddiqui, Y. (2011). Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food chemistry, 124(2), 620-626.
 
[26]  Chiumarelli, M., Pereira, L. M., Ferrari, C. C., Sarantópoulos, C. I., & Hubinger, M. D. (2010). Cassava starch coating and citric acid to preserve quality parameters of fresh‐cut “Tommy Atkins” mango. Journal of food science, 75(5), E297-E304.
 
[27]  Khaliq, G., Nisa, M., Ramzan, M., & Koondhar, N. (2017). Textural properties and enzyme activity of mango (Mangifera indica L.) fruit coated with chitosan during storage. Journal of Agricultural Studies, 5(2), 32-50.
 
[28]  Kumar, P., Sethi, S., Sharma, R. R., Srivastav, M., Singh, D., & Varghese, E. (2018). Edible coatings influence the cold-storage life and quality of ‘Santa Rosa’plum (Prunus salicina Lindell). Journal of food science and technology, 55, 2344-2350.
 
[29]  Sapper, M., & Chiralt, A. (2018). Starch-based coatings for preservation of fruits and vegetables. Coatings, 8(5), 152.
 
[30]  Wills R. B. H., & Golding J. B. (2016). Physiology and biochemistry. Postharvest: an introduction to the physiology and handling of fruit and vegetables, (Ed. 6), 34-62.
 
[31]  Silva G. M. C., Silva W. B., Medeiros D. B., Salvador A. R., Cordeiro M. H. M., Silva N. M., & Mizobutsi. G. P. (2017). The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chem., 237, 372-378.
 
[32]  Eskin N. A. M., Hoehn E., & Shahidi F. (2013). Fruits and vegetables. In N. A. M. Eskin, & F. Shahidi (Eds.), Biochemistry of foods. Academic Press, San Diego, 49 -126.
 
[33]  Siddiqui, M. W. (Ed.). (2017). Preharvest modulation of postharvest fruit and vegetable quality. Academic Press.
 
[34]  Formiga, A. S., Junior, J. S. P., Pereira, E. M., Cordeiro, I. N., & Mattiuz, B. H. (2019). Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava ‘Pedro Sato’. Food Chemistry, 290, 144-151.
 
[35]  Sousa F. F., Junior J. S. P., Oliveira K. T., Rodrigues E. C., Andrade J. P., & Mattiuz. B. H. (2021). Conservation of ‘palmer’mango with an edible coating of hydroxypropyl methylcellulose and beeswax. Food Chem., 346, 128925p.
 
[36]  Vilvert J. C., De Freitas S. T., Ferreira M. A. R., De Lima., Leite R. H., Dos Santos F. K. G., Costa C. D. S. R., & Aroucha. E. M. M. (2022). Chitosan and graphene oxide-based biodegradable bags: An eco-friendly and effective packaging alternative to maintain postharvest quality of ‘Palmer’mango. LWT, 154, 112741.
 
[37]  Singh Z., Singh R. K., Sane V. A., & Nath P. (2013). Mango-postharvest biology and biotechnology. CRC Crit Rev Plant Sci, 32(4), 217-236.
 
[38]  Ma X., Zheng B., Ma Y., Xu W., Wu H., & Wang. S. (2018). Carotenoid accumulation and expression of carotenoid biosynthesis genes in mango flesh during fruit development and ripening. Sci. Hortic., 237, 201-206.