American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: https://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2022, 10(5), 233-238
DOI: 10.12691/ajfst-10-5-4
Open AccessMini Review

A Mini-Review on Almonds and Cashew Nuts: Processing Impact, Phytochemical and Microbiological Properties, and Implications on Human Health

Adriana Dantas1, and Diogo Pontes Costa2

1Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil

2Postgraduate Program in Design, Federal University of Santa Catarina, Center for Communication and Expression, Florianópolis, SC, Brazil

Pub. Date: December 18, 2022

Cite this paper:
Adriana Dantas and Diogo Pontes Costa. A Mini-Review on Almonds and Cashew Nuts: Processing Impact, Phytochemical and Microbiological Properties, and Implications on Human Health. American Journal of Food Science and Technology. 2022; 10(5):233-238. doi: 10.12691/ajfst-10-5-4

Abstract

Consumers are becoming vegan, vegetarian, or flexitarian due to the factors such as a healthy lifestyle, and growing environmental concerns. Circumstances like this have cumulatively driven the global nuts and dried fruits market. Thereby, this study aims to review two nuts (almond and cashew nut) in terms of processing effect on their quality attributes, nutritional value, phytochemical composition, and significant health advantages. Almonds are rich in phenolic extract, which is useful in preventing or slowing down the processes of various oxidative stress-related diseases. Additionally, studies have indicated that the regular consumption of this nut may modulate intestinal microbiota. Its nutritional properties can also facilitate contamination by pathogens and their growth (for instance, E. coli O157:H7, Salmonella enterica, and L. monocytogenes) during production steps or storage. In turn, the cashew nut is a food that promotes the reduction of LDL cholesterol, improvement in the cardiovascular system, and control of diabetes. Allergenic proteins are found in both nuts, although some studies demonstrated a considerable decrease in allergenicity after submitting samples to high-pressure treatments at high temperatures. Finally, we consider that there are still several research opportunities in the field, mainly related to microbiology, allergenicity, and sustainable production. Thus, the consumption of these nuts in the world could be consolidated, taking into account that in various regions of the globe, they are expensive foods and therefore not accessible to several populations.

Keywords:
bioactive compounds antioxidants roasting treatment industrial processes cashew nut protein

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Market Research Report. (2020). Dried fruits and nuts market size, share & industry analysis (2022–2028). Available online: https://www.fortunebusinessinsights.com/dried-fruits-and-nuts-market-103222 accessed on 8 February 2022.
 
[2]  Duthie, S. J., Duthie, G. G., Russell, W. R., Kyle, J. A. M., et al. (2018). Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: a randomised trial. European Journal of Nutrition, 57, 1855-1872.
 
[3]  Rovira, G., Miaw, C. S. W., Martins, M. L. C., Sena, M. M., de Souza, S. V. C., Ruisánchez, I., & Pilar Callao, M. (2022). In-depth chemometric strategy to detect up to four adulterants in cashew nuts by IR spectroscopic techniques. Microchemical Journal, 107816.
 
[4]  Robert, M.-C. (2019). Food Allergens: Seafood, Tree Nuts, Peanuts (L. Melton, F. Shahidi, & P. B. T.-E. of F. C. Varelis (eds.); pp. 640-647). Academic Press.
 
[5]  Borres, M. P., Sato, S., & Ebisawa, M. (2022). Recent advances in diagnosing and managing nut allergies with focus on hazelnuts, walnuts, and cashew nuts. World Allergy Organization Journal, 15(4), Article 100641.
 
[6]  Banerjee, S. (2020). Nutritional benefits of various nuts and dry fruits: the natural energizers. ISSN: 2581-8317. Agriculture & Food, 2(11), 747-750.
 
[7]  Yada, S., Lapsley, K., & Huang, G. (2011). A review of composition studies of cultivated almonds: Macronutrients and micronutrients. Journal of Food Composition and Analysis, 24 (4-5), 469-480.
 
[8]  Albala, K. (2009). Almonds along the silk road: the exchange and adaptation of ideas from West to East. Petits Propos Culinaires, 88, 19-34.
 
[9]  Market Research Report. (2020). Almond ingredients market size, share & industry analysis (2022-2029). Available online: https://www.fortunebusinessinsights.com/almond-ingredients-market-102252 accessed on 8 February 2022.
 
[10]  Ministry of Foreign Affairs – Netherlands. (2019). Exporting almonds to Europe. Available online: https://www.cbi.eu/market-information/processed-fruit-vegetables-edible-nuts/almonds accessed on 8 December 2021.
 
[11]  Javaid, T., Mahmood, S., Saeed, W., & Qamrosh Alam, M. (2019). A critical review on varieties and benefits of almond (Prunus dulcis). Acta Scientific Nutritional Health, 3(11), 70-72.
 
[12]  Madan, J., Desai, S., Moitra, P., Salis, S., Agashe, S., Battalwar, R., Mehta, A., Kamble, R., Kalita, S., Phatak, A. G., Udipi, S. A., Vaidya, R. A., & Vaidya, A. B. (2021). Effect of almond consumption on metabolic risk factors—glucose metabolism, hyperinsulinemia, selected markers of inflammation: A randomized controlled trial in adolescents and young adults. Frontiers in Nutrition, 8, Article 668622.
 
[13]  Dreher, M. L. A. (2021). Comprehensive review of almond clinical trials on weight measures, metabolic health biomarkers and outcomes, and the gut microbiota. Nutrients, 13, Article 1968.
 
[14]  Sugizaki, C. S. A., & Naves, M. M. V. (2018). Potential prebiotic properties of nuts and edible seeds and their relationship to obesity. Nutrients, 19, Article 1645.
 
[15]  Liu, Z., Lin, X., Huang, G., Zhang, W., Rao, P., & Ni, L. (2014). Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe, 26, 1-6.
 
[16]  Che, H., Zhang, Y., Lyu, S.-C., Nadeau, K. C., & McHugh, T. (2019). Identification of almond (Prunus dulcis) vicilin as a food allergen. Journal of Agricultural and Food Chemistry, 67(1), 425-432.
 
[17]  De Angelis, E., Bavaro, S. L., Forte, G., Pilolli, R., & Monaci, L. (2018). Heat and pressure treatments on almond protein stability and change in immunoreactivity after simulated human digestion. Nutrients, 10(11), Article 1679.
 
[18]  Harris, L. J., & Yada, S. (2021). Outbreaks of foodborne illness associated with the consumption of tree nut, legume, and seed pastes [Table and references]. In Outbreaks from tree nut, legume, and seed pastes. Available at: https://ucfoodsafety.ucdavis.edu/low-moisture-foods/nuts-and-nut-pastes. Accessed 17 February 2022.
 
[19]  Yada, S., & Harris, L. J. (2021). Recalls of tree nuts and peanuts in the U.S., 2001 to present (version 2) [Table and references]. In U.S. recalls of nuts. Available at: https://ucfoodsafety.ucdavis.edu/low-moisture-foods/nuts-and-nut-pastes. Accessed 17 February 2022.
 
[20]  Wang, L., Gurtler, J. B., Wang, W., & Fan, X. (2019). Interaction of gaseous chlorine dioxide and mild heat on the inactivation of Salmonella on almonds. Journal of Food Protection, 82, 1729-1735.
 
[21]  Rane, B., Lacombe, A., Sablani, S., Bridges, D. F., Tang, J., Guan, J., & Wu, V. C. H. (2021). Effects of moisture content and mild heat on the ability of gaseous chlorine dioxide against Salmonella and Enterococcus faecium NRRL B-2354 on almonds. Food Control, 123, Article 107732.
 
[22]  Salazar, F., Garcia, S., Lagunas-Solar, M., Pan, Z., & Cullor, J. (2018). Effect of a heat-spray and heat-double spray process using radiofrequency technology and ethanol on inoculated nuts. Journal of Food Engineering, 227, 51-57.
 
[23]  Cheng, T., Li, R., Kou, X., & Wang, S. (2017). Influence of controlled atmosphere on thermal inactivation of Escherichia coli ATCC 25922 in almond powder. Food Microbiology, 64, 186-194.
 
[24]  Cheng, T., & Wang, S. (2018). Influence of storage temperature/time and atmosphere on survival and thermal inactivation of Escherichia coli ATCC 25922 inoculated to almond powder. Food Control, 86, 350-358.
 
[25]  Cheng, T., Ramaswamy, H., Xu, R., Liu, Q., Lan, R., & Wang, S. (2020). Fifty Ohm radio frequency heating treatment under controlled atmosphere for inactivating Escherichia coli ATCC 25922 inoculated on almond kernels. LWT – Food Science and Technology, 123, Article 109124.
 
[26]  Song, W.-J., & Kang, D.-H. (2021). Influence of packaging methods on the dry heat inactivation of Salmonella Typhimurium, Salmonella Senftenberg, and Salmonella Enteritidis PT 30 on almonds. LWT - Food Science and Technology, 143, Article 111121.
 
[27]  Ha, J.-W., & Kang, D.-H. (2015). Combining lactic acid spray with NIR radiant heating to inactivate Salmonella enterica serovar Enteritidis on almond and pine nut kernels. Applied and Environmental Microbiology, 81(13), 4517-4524.
 
[28]  Lacombe, A., Niemira, B. A., Sites, J., Boyd, G., Gurtler, J. B., Tyrell, B., & Fleck, M. (2016). Reduction of bacterial pathogens and potential surrogates on the surface of almonds using high-intensity 405-nanometer light. Journal of Food Protection, 79(11), 1840-1845.
 
[29]  Liu, X., Fan, X., Wang, W., Yao, S., & Chen, H. (2021). Wetting raw almonds to enhance pulse light inactivation of Salmonella and preserve quality. Food Control, 125, Article 107946.
 
[30]  Han, J.-Y., Song, W.-J., Eom, S., Kim, S. B, & Kang, D.-H. (2020). Antimicrobial efficacy of cold plasma treatment against food-borne pathogens on various foods. Journal of Physics D: Applied Physics, 53(20), Article 204003.
 
[31]  Ruiz-Hernández, K., Ramírez-Rojas, N. Z., Meza-Plaza, E. F., García-Mosqueda, C., Jauregui-Vázquez, D., Rojas-Laguna, R. & Sosa-Morales, M. E. (2021). UV-C treatments against Salmonella Typhimurium ATCC 14028 in inoculated peanuts and almonds. Food Engineering Reviews, 13(12).
 
[32]  Steinbrunner, P. J., Limcharoenchat, P., Suehr, Q. J., Ryser, E. T., Marks, B. P., & Jeong, S. (2019). Effect of food structure, water activity, and long-term storage on X-ray irradiation for inactivating Salmonella Enteritidis PT30 in low-moisture foods. Journal of Food Protection, 82(8), 1405-1411.
 
[33]  Grundy, M. M.-L., Lapsley, K., & Ellis, P. R. (2016). A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science & Technology, 51(9), 1937-1946.
 
[34]  Siracusa, R., Fusco, R., Peritore, A. F., Cordaro, M., D’Amico, R., Genovese, T., Gugliandolo, E., Crupi, R., Smeriglio, A., Mandalari, G., Cuzzocrea, S., Paola, R., & Impellizzeri, D. (2020). The antioxidant and anti-Inflammatory properties of Anacardium occidentale L. cashew nuts in a mouse model of colitis. Nutrients, 12(3), Article 834.
 
[35]  Uslu, N., & Özcan, M. M. (2019). Effect of microwave heating on phenolic compounds and fatty acid composition of cashew (Anacardium occidentale) nut and oil. Journal of the Saudi Society of Agricultural Sciences, 18(3), 344-347.
 
[36]  Yang, J., Liu, R. H., & Halim, L. (2009). Antioxidant and antiproliferative activities of common edible nut seeds. LWT - Food Science and Technology, 42(1), 1-8.
 
[37]  Feng, Y., Lieberman, V. M., Jung, J., & Harris, L. J. (2020). Growth and survival of foodborne pathogens during soaking and drying of almond (Prunus dulcis) kernels. Journal of Food Protection, 83(12), 2122-2133.
 
[38]  López-Calleja, I. M., de la Cruz, S., Pegels, N., González, I., Martín, R., & García, T. (2014). Sensitive and specific detection of almond (Prunus dulcis) in commercial food products by real-time PCR. LWT - Food Science and Technology, 56(1), 31-39.
 
[39]  Emelike, N. J. T., Barber, L. I., & Ebere, C. O. (2015). Proximate, mineral and functional properties of defatted and undefatted cashew (Anacardıum occıdentale Linn.) kernel flour. European Journal of Food Science and Technology, 3(4), 11-19.
 
[40]  Tola, J., & Mazengia, Y. (2019). Cashew production benefits and opportunities in Ethiopia: A Review. Journal of Agricultural and Crop Research, 7(2), 18-25.
 
[41]  Griffin, L., & Dean, L. (2017). Nutrient composition of raw, dry-roasted, and skin-on cashew nuts. Journal of Food Research, 6(6), 13-28.
 
[42]  Aracelli, de S. L., Md., T. I., Antonio, L. G. J., Joao, M. de C. e S., Marcus, V. O. B. de A., Marcia, F. C. J. P., Hercilia, M. L. R., Maria, das G. F. de M., Ana, A. de C. M.-C., & Jose, A. D. L. (2016). Pharmacological properties of cashew (Anacardium occidentale). African Journal of Biotechnology, 15(35), 1855-1863
 
[43]  Geßlein, M., Roessler, P. P., Schuttler, K. F., Biber, R., Bail, H. J., & Efe, T. (2015). Complications and failure of MPFL reconstruction with free tendon grafts in cases of patellofemoral instability. Technology and Health Care, 23(5), 659-666.
 
[44]  Runjala, S., & Kella, L. (2017). Cashew apple (Anacardium occidentale L.) therapeutic benefits, processing and product development: An over view. The Pharma Innovation, 6(7), 260-264.
 
[45]  Desai, D., Raorane, C., Patil, S., Gadgil, R., & Patkar, D. (2017). Anacardium occidentale: fountain of phytochemicals; the qualitative profiling. World Journal of Pharmaceutical Research, 6(5), 585-592.
 
[46]  Dendena, B., & Corsi, S. (2014). Cashew, from seed to market: a review. Agronomy for Sustainable Development, 34, 753-772.
 
[47]  Ros, E. (2010). Health benefits of nut consumption. Nutrients, 2(7), 652-682.
 
[48]  Ghazzawi, H. A., & Al-Ismail, K. (2017). A comprehensive study on the effect of roasting and frying on fatty acids profiles and antioxidant capacity of almonds, pine, cashew, and pistachio. Journal of Food Quality, Lipids and Food Quality, Article 9038257.
 
[49]  Alves Filho, E. G., Silva, L. M. A., Filho, F. O. et al. (2019). Cold plasma processing effect on cashew nuts composition and allergenicity. Food Research International, 125, Article 108621.
 
[50]  Cuadrado, C., Sanchiz, A., Vicente, F., Ballesteros, I., & Linacero, R. (2020). Changes induced by pressure processing on immunoreactive proteins of tree nuts. Molecules, 25(4), Article 954.
 
[51]  Sanchiz, A., Cuadrado, C., Dieguez, M. C. et al. (2018). Thermal processing effects on the IgE-reactivity of cashew and pistachio. Food Chemistry, 245, 595-602.
 
[52]  Yan, X., Wang, Y., Chen, Yi., Xie, J., & Yu, Q. (2021). Effect of roasting duration on the solubility, structure, and IgE-binding capacity of cashew nut proteins. Innovative Food Science & Emerging Technologies, 68, Article 102635.
 
[53]  Venkatachalam, M., Monaghan, E. K., Kshirsagar, H. H., Robotham, J. M., O'Donnell, S. E., Gerber, M. S., Roux, K. H. & Sathe, S. K. (2008). Effects of processing on immunoreactivity of cashew nut (Anacardium occidentale L.) seed flour proteins. J. Journal of Agricultural and Food Chemistry, 56, 8998-9005.