American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: https://www.sciepub.com/journal/ajfn Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
Go
American Journal of Food and Nutrition. 2013, 1(2), 12-21
DOI: 10.12691/ajfn-1-2-2
Open AccessArticle

Organic and Conventional Chicken Meat Produced In Uruguay: Colour, Ph, Fatty Acids Composition and Oxidative Status

G. Castromán1, M. del Puerto2, A. Ramos1, 2, M.C. Cabrera1, 2 and A. Saadoun1,

1Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República. Iguá. Montevideo, Uruguay

2Dpto. Producción Animal y Pasturas, Laboratorio de Calidad de Alimentos y Calidad de Productos, Facultad de Agronomía, Universidad de la República. Eugenio Garzón 809. Montevideo, Uruguay

Pub. Date: July 18, 2013

Cite this paper:
G. Castromán, M. del Puerto, A. Ramos, M.C. Cabrera and A. Saadoun. Organic and Conventional Chicken Meat Produced In Uruguay: Colour, Ph, Fatty Acids Composition and Oxidative Status. American Journal of Food and Nutrition. 2013; 1(2):12-21. doi: 10.12691/ajfn-1-2-2

Abstract

The organic chicken meat is present in the market and accepted by consumers in Uruguay. However, no information about its quality is available. The study of organic meat showed a higher lightness (L*) and lower yellowness (b*) than conventional chicken meat. For redness (a*), the results were inconclusive. Haem iron content was higher in organic meat and the lipids content was not different between organic and conventional meat. The fatty acids composition showed that the organic meat presented 31-34 %, 49-53 % and 12-14 % of saturated, monounsaturated and polyunsaturated fatty acids (PUFA), respectively. The limited uses of corn and soybean to fed organic chickens, probably explain the unexpected low level of PUFA in organic meat. The organic meat also showed a lower TBARs level and a similar level of protein carbonyl in comparison to the conventional one. Catalase presented a higher activity in organic meat compared to the conventional one. No differences were observed for superoxide dismutase and glutathione peroxidase.

Keywords:
organic meat broiler meat fatty acids TBARs SOD GPx catalase

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  Fanatico, A. C., Pillai, P. B., Cavitt, L. C., Emmert, J. L., Meullenet, J. F. and Owens, C. M., Evaluation of slower-growing broiler genotypes grown with and without outdoor access: Sensory attributes. Poultry Science 85, 337-343. 2006.
 
[2]  ATTRA. Alternative Poultry Production Systems and Outdoor Access http://attra.ncat.org/attra-pub/poultryoverview.html#appendix http://attra.ncat.org/organic.html (accessed 2011/03/30). 2010a.
 
[3]  ATTRA, Label rouge: Pasture-based poultry production in France. http://www.attra.ncat.org/attra-pub/PDF/labelrouge.pdf (accessed 2011/03/30). 2010b.
 
[4]  Castellini, C., Mugnai, C. and Dal Bosco, A., Effect of organic production system on broiler carcass and meat quality. Meat Science 60, 219-225. 2002.
 
[5]  ITAB, http://www.itab.asso.fr/downloads/fiches-elevage/cahier-poulets-web.pdf (accessed 2011, march 29). 2009.
 
[6]  Fanatico, A. C., Pillai, P. B., J. L. Emmert, J. L. and Owens, C. M., Meat quality of slow- and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poultry Science 86, 2245-2255. 2007.
 
[7]  Meluzzi, A., Sirri, F., Castellini, C., Roncarati, A., Melotti, P. and Franchini, A., Influence of genotype and feeding on chemical composition of organic chicken meat. Italian Journal of Animal Science 8, 766-768. 2009.
 
[8]  APODU, http://www.cebra.com.uy/presponsable/fortalecimiento-institucional/acuerdos-con-organizaciones/apodu. (Accessed on 2011/01/15). 2010.
 
[9]  Rapal, http://webs.chasque.net/~rapaluy1/organicos/articulos/decreto_certificacion.pdf. 2008.
 
[10]  Tuyttens, F., Heyndrickx, M., De Boeck, M., Moreels, A., Van Nuffel, A., Van Poucke, E., Van Coillie, E., Van Dongen, S. and Lens, L., Livestock Science 113,123-132. 2008.
 
[11]  Fanatico, A. C., Cavitt, L.C., Pillai, P. B., Emmert, J. L. and Owens, C. M., Evaluation of slower-growing broiler geneotypes grown with and without outdoor access: Meat quality. Poultry Science 84, 1785-1790. 2005.
 
[12]  Gray, J. I.; Gomaa, E. A. and Buckley, D. J., Oxidative quality and shelf life of meats. Meat Science 43, 111-123. 1996.
 
[13]  Rhee, K. S., Anderson, L. M. and Sams, A. R., Lipid oxidation potential of beef, chicken and pork. Journal of Food Science 61, 8-12. 1996.
 
[14]  Morrissey, P. A., Sheehy, P. J. A., Galvin, K., Kerry, J. P. and Buckley, D.J., Lipid stability in meat and meat products. Meat Science 49, S73-S86. 1998.
 
[15]  Daun, C. and Åkesson, B., Comparison of glutathione peroxidase activity, and of total and soluble selenium content in two muscles from chicken, turkey, duck, ostrich and lamb. Food Chemistry 85, 295-303. 2004.
 
[16]  Fellenberg, M.A. and Speisky, H., Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability. World’s Poultry Science Journal 62, 53-70. 2006.
 
[17]  Cielab Colour System, Commission International de l´Eclairage. Paris: CIE Publication. 1976.
 
[18]  Hornsey, H. C., The colour of cooked cured pork. 1. Estimation of the nitric oxide-haem pigments. Journal of the Science of Food and Agriculture 7, 534-541. 1956.
 
[19]  Clark, E. M., Mahoney, A. W. and Carpenter, C. E., Heme and Total Iron in Ready-to-Eat Chicken. Journal of Agriculture and Food Chemistry 45, 124–126. 1997.
 
[20]  Lombardi-Boccia, G, Martinez-Dominguez, B., Aguzzi, Altero and Rincon-Leon, F., Optimization of heme iron analysis in raw and cooked red meat. Food Chemistry 78, 505-510. 2002.
 
[21]  Folch, J., Lees, M. and Sloane-Stanley, G. H., A simple method for the isolation and purification of total lipides peptides from animal tissues. Journal of Biological Chemistry 226, 497-509. 1957.
 
[22]  Ichihara, K, Shibahara, A, Yamamoto, K. and Nakayama, T., An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids 31, 535-539. 1996.
 
[23]  Lynch, S. M. and Frei, B., Mechanisms of copper- and iron-dependent oxidative modifications of human low density lipoprotein. Journal of Lipid Research 34, 1745-1753. 1993.
 
[24]  Mercier, Y., Gatellier, P. and Renerre, M., Lipid and protein oxidation in vitro, and Antioxidant potential in meat from Charolais cows finished on pasture or mixed diet.Meat Science 66, 467-473. 2004.
 
[25]  Marklund, S. and Marklund, G., Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47, 469-474. 1974.
 
[26]  Gatellier, P., Mercier, Y. and Renerre, M., Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of Charolais bovine meat. Meat Science 67, 385-394. 2004.
 
[27]  Aebi, H., Catalase in vitro. Methods in Enzymology 105, 121-126. 1984.
 
[28]  Günzler, A. and Flohé, L., Glutathione Peroxidase. In Greenwald, R. A. (ed). CRC Press Inc Boca Raton, Florida, USA, Vol. 1, 1985. 285-290.
 
[29]  De Vore, V. R. and Greene, B. E., Gluthatione peroxidase in post-rigor bovine semitendinous muscle. Journal of Food Science 47, 1406-1409. 1982.
 
[30]  Stoscheck, C. M., Quantification of protein. Methods in Enzymology 182, 50-68. 1990.
 
[31]  Wang, K.H., Shi, S.R., Dou, T.C. and Sun, H.J., Effect of a free-range raising system on growth performance, carcass yield, and meat quality of slow-growing chicken. Poultry Science 88, 2219-2223. 2009.
 
[32]  Petracci, M., Betti, M., Bianchi, M. and Cavani, C., Color variation and characterization of broiler breast meat during processing in Italy. Poultry Science 83, 2086-2092. 2004.
 
[33]  Van Laack, R.L.J.M., Liu, C.H., Smith, M.O. and Loveday, H.D., Characteristics of pale, soft, exudative broiler breast meat. Poultry Science 79, 1057-1061. 2000.
 
[34]  Swatland, H. J., How pH causes paleness or darkness in chicken breast meat. Meat Science 80, 396-400. 2008.
 
[35]  Husak, R. L., Sebranek, J.G. and Bregendahl, K., A survey of commercially available broilers marketed as organic, free-range and conventional broiler for cooked meat yields, meat composition, and relative value. Poultry Science 87, 2367-2376. 2008.
 
[36]  Boulianne, M. and King, A. J., Biochemical and color characteristics of skinless boneless pale chicken breast. Poultry Science 74, 1693-1698. 1995.
 
[37]  Galeano, P., Martinez Debat, C., Ruibal, F., Franco Fraguas, L. and Galvan, G. A., Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay. Environmental Biosafety Research, DOI:10.1051/ebr/2011100. 2011.
 
[38]  Castañeda, M. P., Hirschler, E. M. and Sams, A. R., Skin Pigmentation Evaluation in Broilers Fed Natural and Synthetic Pigments. Poultry Science 84, 143-147. 2005.
 
[39]  Mourao, J.L., Pinheiro, V.M., Prates, A.M., Bessa, R.J.B., Ferreira, L.M.A., Fontes, C.M.G. and Ponte, P.I.P., Effect of dietary dehydrated pasture and citrus pulp on the performance and meat quality of broiler chickens. Poultry Science 87, 733-743. 2008.
 
[40]  O’Keefe, S. F., Proudfootb, F. G. and Ackman, R. G., Lipid oxidation in meats of omega-3 fatty acid-enriched broiler chickens. Food Research Internationa 28, 417-424. 1995.
 
[41]  Mourot, J. and Hermier, D., Lipids in monogastric animals meat. Reproduction Nutrition development 41, 109-118. 2001.
 
[42]  Bianchi, M., Ferioli, F., Petracci, M., Caboni, M. F., and Cavani, C., The influence of dietary lipid source on quality characteristics of raw and processed chicken meat. European Food Research Technology 229, 339-348. 2009
 
[43]  Ponte, P. I. P., Prates, J. A. M., Crespo, J. P., Crespo, D. G., Mourao, J. L., Alves, S. P., Bessa, R. J. B., Chaveiro-Suarez, M. A., Ferreira, L. M. A. and Fontes, C. M. G. A., Improving the lipid nutritive value of poultry meat through the incorporation of a dehydrated leguminous-based forage in the diet for broiler chicks. Poultry Science 87, 1587-1594. 2008.
 
[44]  Muriel, E., Ruiz, J., Ventanas, J. and Antequera, T., Free-range rearing increases (n-3) polyunsaturated fatty acids of neutral and polar lipids in swine muscles. Food Chemistry 78, 219-225. 2002.
 
[45]  Forrester-Anderson, I.T., McNitt, J., Way, R. and Way, M., Fatty acid content of pasture-reared fryer rabbit meat. Journal of Composition and Analysis 19, 715-719. 2006.
 
[46]  Saadoun, A. and Cabrera, M. C., A review of the nutritional content and technological parameters of indigenous sources of meat in South America. Meat Science 80, 570-581. 2008.
 
[47]  Jahan, K., Paterson, A. and Spickett, C. M., Fatty acid composition, antioxidants and lipid oxidation in chicken breasts from different production regimes. International Journal of Food Science and Technology 39, 443-453. 2004.
 
[48]  Mercier, Y., Gatellier, P., Viau, M., Remington, H. and Renerre, M., Effect of dietary fat and vitamin E on colour stability and on lipid and protein oxidation in turkey meat during storage. Meat Science 48, 301-318. 1998.
 
[49]  Gatellier, P., Mercier, Y., Rock, E. and Renerre, M., Influence of dietary fat and vitamin E supplementation on free radical production and on lipid and protein oxidation in turkey muscle extracts. Journal of Agricultural and Food Chemistry, 48, 1427-1433. 2000.
 
[50]  Liu, G. and Xiong, Y.L., Contribution of lipid and protein oxidation to rheological differences between chicken white and red muscle myofibrillar proteins. Journal of Agricultural and Food Chemistry 44, 779-784. 1996.
 
[51]  Pradhan, A.A., Rhee, K.S. and Hernandez P., Stability of catalase and its potential role in lipid oxidation in meat. Meat Science 54, 385-390. 2000.
 
[52]  Parise, G., Phillips, S.M., Kaczor, J.J. and Tarnopolsky, M.A., Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology and Medicine 39, 289-295. 2005.
 
[53]  Jenkins, R.R. and Tengi, J., Catalase activity in skeletal muscle of varying fibre types. Experientia 37, 67-68. 1981.
 
[54]  De Vore, V.R. Colnago, G.L., Jensen, L.S. and Greene, B.E., Thiobarbituric acid values and glutathione peroxidase activity in meat from chickens fed a selenium-supplemented diet. Journal of Food Science 48, 300-301. 1983.
 
[55]  Castellini, C., Organic poultry production system and meat characteristics, in XVIIth European Symposium on the Quality of Poultry Meat. Doorwerth, The Netherlands. 47-52. May 2005.
 
[56]  Lopez-Ferrer, S., Baucells, M. D., Barroeta, A. C., Galobart, J. and Grashorn, M. A., n-3 enrichment of chicken meat. 2. Use of precursors of long-chain polyunsaturated fatty acids:Linseed oil. Poultry Science 80, 753-761. 2001.
 
[57]  Cabrera, M. C., Saadoun, A., Grompone, A., Pagano, T, Salhi, M., Olivero, R. and del Puerto, M., Enriching the egg yolk in n-3 fatty acids by feeding hens with diets containing horse fat produced in Uruguay. Food Chemistry 98, 767-773. 2006.
 
[58]  Coates, W. and Ayerza, R., “Chia (Salvia hispanica L.) seed as an n-3 fatty acid source for finishing pigs: Effects on fatty acids composition and fat stability of the meat and internal fat, growth performance, and meat sensory characteristics”. Journal of Animal Science 87, 3798-3804. 2009.