[1] | Mathews C., Saxena K. (2005). Prospects for pigeonpea cultivation in drought-prone areas of South Africa. Proceedings of the First International Edible Legume Conference in Conjunction with the IVth World Cowpea Congress, Durban, South Africa, p45-53. |
|
[2] | Wu J., Zhou,Q., Zhou C., Cheng K.-W. &Wang,M. (2024). Strategies to promote the dietary use of pigeon pea (Cajanus cajan L.) for human nutrition and health. Food Frontiers, 5, 1014–1030. |
|
[3] | Talabi A.O., Vikram P., Thushar S., Rahman H., Ahmadzai H, Nhamo N, Shahid M and Singh RK (2022) Orphan Crops: A Best Fit for Dietary Enrichment and Diversification in Highly Deteriorated Marginal Environments. Front. Plant Sci. 13:839704. doi: 10.3389/fpls.2022.839704. |
|
[4] | Odeny D.A. (2007). The potential of pigeonpea (Cajanus cajan (L.) Millsp.) in Africa. Natural Resources Forum 31: 297–305. |
|
[5] | Singh A., Kumar V. (2022). Nutritional, phytochemical, and antimicro-bial attributes of seeds and kernels of different pumpkin cultivars. Food Frontiers, 3(1):182–193. |
|
[6] | Soetan K., Oyewole O. (2009). The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: A review. African Journal of Food Science, 3(9):223–232. |
|
[7] | Avilés-Gaxiola S., Chuck-Hernández C., Serna Saldivar S. O. (2018). Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science, 83(1):17–29. |
|
[8] | Feizollahi E., Mirmahdi R. S., Zoghi A., Zijlstra R. T., Roopesh M., Vasanthan T. (2021). Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International, 143: 110. |
|
[9] | Samtiya M., Aluko R.E., Puniya A.K., Dhewe T. (2021). Enhancing micronutrients availability through fermentation of plaant-based foods: A concise review. Fermentation, 7 (2): 63. |
|
[10] | Fasoyiro S., Widodo Y., Taiwo K. (2012). Processing and utilization of legumes in the tropics. Food Science and Technology, 53(2): 1-10. |
|
[11] | Emenonye AG. (2016). Extent of processing effect on the proximate and mineral composition of African breadfruit seed. International Journal of Science and Technology, 4(4): 6-10. |
|
[12] | AOAC (2005). Official method of analysis of the Association of official Analytical Chemist, 5th ad. AOAC Press, Arlington, Virginia, USA, 375-379 pp. |
|
[13] | AOAC (1990). Official methods of analysis. Association of Official Analytical Chemists Ed., Washington DC, 684 p. |
|
[14] | Assoi S., Niamke A., Konan Y., Cisse M. & Bamba B. (2024). Effect of two different pretreatment methods on the nutritional composition, antioxidant capacity, and functional properties of mango (Mangifera indica var. Kent and Brooks) peel powders usable as healthy ingredients. Journal of Food Measurement and Characterization 1-16. |
|
[15] | Wolff J. P. (1968). Manuel d’analyse des corps gras; Azoulay éd, Paris (France), 519 p. |
|
[16] | Agbo E.E., Abarikwu S.O.,Olajide O.J. (1985). Extraction of ethanol-soluble sugars and their effect on the quality of some Nigerian fermented foods. Journal of Food Science, 50(6):1637-1639. |
|
[17] | Dubois M., Gilles K. A., Hamilthon J. K., Rebers P. A., Smith F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356. |
|
[18] | Bernfeld D. (1955). Amylase β et α, In method in enzymology 1, Colowick S.P. and Kaplan N. O., Academic Press, New York, 149-154 pages. |
|
[19] | .Singleton V.L., Orthofer R., Lamuela-Raventos R.M. (1999). Analysis of total phenols and other antioxydants by means of Folhin-ciocalteu reagent. Methods Enzymology, 299: 152-178. |
|
[20] | Assoi Sylvie & Wicker Louise (2022). Impacts of Precipitating Methods on the Physicochemical, Rheological, and Functional Properties of Borassus aethiopum Mart Fruit Pulp Pectin. In Emerging Challenges in Agriculture and Food Science, 5 (3): 24-39. |
|
[21] | Marinova D., Ribarova F. & Atanassova M. (2005). Total phenolics and total flavonoids in bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, 40, 3, 2005, 255-260. |
|
[22] | Ngo Nlend M., Nyangono C. F., Fokunang, C. (2013). Phytochemical screening, evaluation of in-vitro antioxidant activities and acute toxicity effect of organic extracts of dorstenia mannii (moraceae). Health sci. dis, 13(3). |
|
[23] | Niamke A., M.,, Assoi S., Konan N. Y., Soro Y. R., Djaman A.J. (2018). Physicochemical Characterization of African Aubergine Solanum Aethiopicum Anguivi (Solanaceae) from Northern Cote d’Ivoire. International Journal of Environmental & Agriculture Research, 4(12), 1-7. |
|
[24] | Thangaraj, P. (2016). Proximate Composition Analysis. In: Pharmacological Assays of Plant-Based Natural Products. Progress in Drug Research, 71. Springer, Cham. |
|
[25] | Zhao L., Li Y., Liang D. (2020). Reducing Anti-nutrional factors in Pulses through Germination A Review. Journal of Nutrional Science, 9: 21. |
|
[26] | Rizvi Q. E. H., Kumar K., Ahmed N., Yadav A. N., Chauhan D., Thakur P., Jan S., Sheikh I. (2022). Influence of soaking and germination treatments on the nutritional, anti-nutritional, and bioactive composition of pigeon pea (Cajanus cajan L.). Journal of Applied Biology and Biotechnology, 10(3): 127–134. |
|
[27] | Kaur A., Singh R., Kaur J. (2018). Effects of Germination on nutritional composition and anti-nutritional factors of cajanus cajan. International Journal of Food Science and Nutrition Engineering, 8(1), 31-37. |
|
[28] | Sofi S. A., Singh J., Muzafar K., Mir S. A. Dar B. N (2020). Efect of germination time on physico-chemical, functional, pasting, rheology and electrophoretic characteristics of chickpea four. Journal Food Meas, (14): 2380–2392. |
|
[29] | Sharma S., Singh A., Singh B. (2019). Effet du temps et de la température de germination sur les propriétés techno-fonctionnelles et la solubilité des protéines de la farine de pois d'Angole (Cajanus cajan). Assurance qualité et sécurité des cultures et des aliments, 11 (3): 305-312. |
|
[30] | Muñoz-Llandes, C.B., Martínez-Villaluenga, C., Palma-Rodríguez, H.M., Román-Gutiérrez, A.D., Castro-Rosas, J., Guzmán-Ortiz, F.A. (2023). Effect of Germination on Starch. Starch: Advances in Modifications, Technologies and Applications, 457–486. |
|
[31] | Pizent A., Sakan Z., Ivonovic J.(2019). Nutritional Evaluation of Roasted and Raw Pulses. Food Chemistry, 276:141-148. |
|
[32] | Chhaya P., Poonia A., Jain R. (2021). Effect of Roasting on Phydicochemical Proprerties and Antinutrional Factors of Pulses. Journal of Food Science and Technogy, 58(10): 3915-392. |
|
[33] | Enyinnaya C., Joseph O.A., Olajide E. A., Lilian C. A., Dorcas G.J., Gloire F. A., Janet A. A., Samson A.O., , Oluwafemi A. A. (2023). Composition nutritionnelle, bioactivité, caractéristiques de l'amidon, propriétés thermiques et microstructurales de la farine de pois d'Angole germée. . : 101. |
|
[34] | Rizvi Q. E. H., Kumar K., Ahmed N., Yadav A. N., Chauhan D., Thakur P., Jan S., Sheikh I. (2022). Influence of soaking and germination treatments on the nutritional, anti-nutritional, and bioactive composition of pigeon pea (Cajanus cajan L.). Journal of Applied Biology and Biotechnology, 10(3): 127–134. |
|
[35] | Richard A.A., MaryAnn S. M., Gifty K., Fortune A., Selorm Y. D., Francis K. A. (2023). Physicofunctional and nutritional characteristics of germinated pigeon pea (Cajanus cajan) four as a functional food ingredient. Scientifc Reports 13:16627. |
|
[36] | Choudhury A. K. (2008). Effect of roasting on the nutrient composition of selected legumes. Food Chemistry, 105(1), 244-251. |
|
[37] | Nkhata S. G. (2017). Effect of roasting on antinutritional factors of legumes.Food Science and Nutrition, 5(2), 348-354. |
|
[38] | Pathak P. S. (2018). "Germination effect on phytochemical constituents." Journal of Food Science and Technology, 55(9): 3591-3600. |
|
[39] | Ravi K. (2015). Effects of germination on the nutrient composition and quality of legume seeds. International Journal of Advances in Pharmacy, Biology and Chemistry, 4(3): 743-747. |
|
[40] | Zhang H. (2018). Impact of thermal treatment on flavonoids in legumes: a review. Food Research International, 104: 169-179. |
|
[41] | Indira K. (2017). "Nutritional and antinutritional factors of legumes.Journal of Food Science and Technology, 54(1): 10-20. |
|
[42] | Samtiya M., Aluko R. E., Dhewa T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition, (2):1–14. |
|
[43] | Saad B., Al-Naamani L., Ibrahim A. (2016). Nutritional value and functional properties of sprouted legumes. Journal of Nutrition et Food Sciences, 6(2): 487 |
|
[44] | Sahni V., Kaur R., Gupta, H. (2018). Influence of germination on functional and nutritional properties of legumes. Journal of Culinary Science et Technology, 16(2): 147-155. |
|
[45] | Awuchi C. G., Igwe V. S., Echeta C. K. (2019). The functional properties of foods and fours. International Journal of Advanced Academic Research. 5: 139–160. |
|
[46] | Ghaly A. E., Almuna M. M., Al-Azaki M. A. (2015). The effect of heat treatment on the physicochemical properties of legumes. International Journal of Food Science et Technology, 50(5): 1080-1090. |
|
[47] | Morris V. J., Leach C. (2012). Effects of thermal treatments on the properties of starch and proteins. Food and Bioproducts Processing, 90(1): 1-10. |
|
[48] | Sibian M. S., Saxena D. C. Riar C. S. (2017). Efect of germination on chemical, functional and nutritional characteristics of wheat, brown rice and triticale: A comparative study. Journal Sciences of Food and Agriculture, 97: 4643–4651. |
|
[49] | Alvi A. J., Khan M. I., Khan M. I. (2020). Effects of roasting conditions on the functional properties of legumes. Journal of Food Science and Technology, 57(3): 1374-1382. |
|