Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2023, 11(12), 785-797
DOI: 10.12691/jfnr-11-12-10
Open AccessArticle

Consumption of Peach Palm (Bactris gasipaes) Nanocellulose: Glucose Metabolism and Orexigenic/Anorexigenic Hormones in Mice

Ana Gabriela Flores-Rueda1, Talita Slapak-Franco2, Rosa María Jiménez-Amezcua1, Dalia Samanta Aguilar-Ávila1, Alma Hortensia Martínez-Preciado1, Edgar Benjamín Figueroa-Ochoa1, Rocío Ivette López-Roa1 and Juan Manuel Viveros-Paredes1,

1Center of Exact Sciences and Engineering. University of Guadalajara, Boulevard Marcelino García Barragán 1421, Col. Olímpica. C.P. 44430. Guadalajara, Jalisco., México.

2Department of Environmental Engineering. University of Paraná, R. XV de Novembro 1299 – Centro, Curitiba – PR, 80060 – 000, Paraná, Brazil.

Pub. Date: January 01, 2024

Cite this paper:
Ana Gabriela Flores-Rueda, Talita Slapak-Franco, Rosa María Jiménez-Amezcua, Dalia Samanta Aguilar-Ávila, Alma Hortensia Martínez-Preciado, Edgar Benjamín Figueroa-Ochoa, Rocío Ivette López-Roa and Juan Manuel Viveros-Paredes. Consumption of Peach Palm (Bactris gasipaes) Nanocellulose: Glucose Metabolism and Orexigenic/Anorexigenic Hormones in Mice. Journal of Food and Nutrition Research. 2023; 11(12):785-797. doi: 10.12691/jfnr-11-12-10

Abstract

Fiber intake has been shown to increase gastrointestinal motility, slow gastric emptying rate, reduce glucose absorption, and body weight, increase insulin sensitivity, and stimulate the hunger-satisfaction effect. Despite the high fiber variety, this set of characteristics is not present in all products. For this reason, this study assessed the physicochemical and structural properties of B. gasipaes nanocellulose and its metabolic effect on glucose regulation, intestinal motility, and orexigenic and anorexigenic hormones related to signals of food consumption and body weight gain/loss. The peach palm (Bactris gasipaes) nanocellulose has a particle size of 44.30 μm, which increases its water balance, oil, and viscosity retention capacity, allowing at a concentration of 12.50 mg/kg to decrease the rate of gastric emptying, with an increase in water retention in feces, reduction in body weight, glucose reduction, and other effects on intestinal markers of inflammation and gastrointestinal hormones. As a conclusion, the consumption of nanocellulose in mice of the BALB/c strain reduces the sense of hunger and stimulates the feeling of satiety, which may have a positive effect in the decrease of metabolic-related diseases.

Keywords:
fiber gastrointestinal glucose nanocellulose peach palm satiety

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Barbosa, P.M., Regina, A.E., Lucia, C., Petkowicz, D.O., Almeida, E., Manoel, A. and Helena, L, “Impact of extraction methods and genotypes on the properties of starch from peach palm (Bactris gasipaes Kunth) fruits”, LWT. Food Science and Technology, 150. 111983. 2021.
 
[2]  Pinheiro, R.C., Ballesteros, L.F., Cerqueira, M.A., Rodrigues, A.M.C., Teixeira, J.A. and Silva, L.H.M, “Peach palm (Bactris gasipaes Kunth) and mammee apple (Mammea americana L.) seeds: Properties and potential of application in industry”, LWT, 170. 114089. 2022.
 
[3]  Ferrari, F.M.H., Souza, C.M., Villas, B.F., Lopes, L.C., Maria, L.F.C., Michielon, de S.S., Pedrosa, S.C.M.T, and Mach, C.C.L, “Characterization and technological properties of peach palm (Bactris gasipaes var. gasipaes) fruit starch” Food Res Int. 136:109569. 2020.
 
[4]  de Sá, F.P., Belniaki, A.C., Panobianco, M., Gabira, M.M., Kratz, D., de Lima, E.A., Wendling, I., Esteves, M.W.L, “Peach palm residue compost as substrate for Bactris gasipaes self- sustaining seedlings production”, International journal of Recycling of Organic Waste in Agriculture, 9: 183-192. 2020.
 
[5]  de Cássia, S.K., Novi, D.M.P., de Oliveira-Junior, V.A., Durigon, D.C., Fraga, F.C., Dos Santos, L.F.O., Helm, C.V., de Lima, E.A., Peralta, R.A., de Fátima, P.M.M.R., Corrêa, R.C.G., Bracht, A, and Peralta, R.M, “Improving Enzymatic Saccharification of Peach Palm (Bactris gasipaes) Wastes via Biological Pretreatment with Pleurotus ostreatus”, Plants (Basel), 12(15):2824. 2023.
 
[6]  Franco, T.S., Potulski, D.C., Viana, L.C., Forville, E., de Andrade, A.S. and de Muniz, G.I.B, “Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes)”, Carbohydrate Polymers, 218. 8–19. 2019.
 
[7]  Shi, Y., Jiao, H., Sun, J., Lu, X., Yu, S., Cheng, L., Wang, Q., Liu, H., Biranje., S., Wang, J. and Liu, J, “Functionalization of nanocellulose applied with biological molecules for biomedical application: A review”, Carbohydrate Polymers. 285. 119208. 2022.
 
[8]  Luo, Q., Shen, H., Zhou, G. and Xu, X, “A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components”, Carbohydrate Polymers, 303. 120449. 2022.
 
[9]  Jiang, H., Wu, S. and Zhou, J, “Preparation and modification of nanocellulose and its application to heavy metal adsorption: A review”, International Journal of Biological Macromolecules, 236. 123916. 2023.
 
[10]  Yuan, Q., Huang, L., Wang, P., Mai, T. and Ma, M, “Cellulose nanofiber/molybdenum disulfide aerogels for ultrahigh photothermal effect”, Journal of Colloid and Interface Science, 624. 70–78. 2022.
 
[11]  Xu, T., Du, H., Liu, H., Liu, W., Zhang, X., Si, C., Liu, P. and Zhang, K, “Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices”, Advanded Materials, 33(48). E2101368. 2021.
 
[12]  Lu, Q., Yu, X., Elgasim, A., Yagoub, A., Wahia, H. and Zhou, C, “Application and challenge of nanocellulose in the food industry”, Food Bioscience, 43. 101285. 2021.
 
[13]  Ren, D., Wang, Y., Wang, H., Xu, D. and Wu, X, “Fabrication of nanocellulose fibril-based composite film from bamboo parenchyma cell for antimicrobial food packaging”, International Journal of Biological Macromolecules, 210. 152–160. 2022.
 
[14]  Wen, J.J., Li, M.Z., Hu, J.L., Wang, J., Wang, Z.Q., Chen, C.H., Yang, J., Huang, X., Xie, M. and Nie, S.P, “Different dietary fibers unequally remodel gut microbiota and charge up anti-obesity effects”, Food Hydrocolloids, 140. 108617. 2023.
 
[15]  Guan, Z.-W.; Yu, E.-Z, and Feng, Q, “Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota”, Molecules, 26(22). 6802. 2021.
 
[16]  Dai, B., Huang, S. and Deng, Y, “Modified insoluble dietary fibers in okara affect body composition, serum metabolic properties, and fatty acid profiles in mice fed high-fat diets: an NMR investigation”, Food Research International, 116. 1239–1246. 2019.
 
[17]  Gardner, C.D., Landry, M.J., Perelman, D., Petlura, C., Durand, L.R., Aronica, L., Crimarco, A., Cunanan, K.M., Chang, A., Dant, C.C., Robinson, J.L. and Kim, S.H, “Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: The interventional Keto-Med randomized crossover trial”, The American Journal of Clinical Nutrition, 116(6). 640 – 652. 2022.
 
[18]  Wu, S., Jia, W., He, H., Yin. J., Xu, H., He, C., Zhang, Q., Peng, Y. and Cheng, R, A, “New Dietary Fiber Can Enhance Satiety and Reduce Postprandial Blood Glucose in Healthy Adults: A Randomized Cross-Over Trial”, Nutrients, 15(21):4569. 2023.
 
[19]  Korczak, R, and Slavin, J. L, “Fructooligosaccharides and appetite”, Curr Opin Clin Nutr Metab Care, 21(5):377-380. 2018.
 
[20]  Huang, G., Liu, J., Jin, W., Wei, Z., Ho, C., Zhao, S., Zhang, K. and Huang, Q, “Formation of Nanocomplexes between Carboxymethyl Inulin and Bovine Serum Albumin via pH-Induced Electrostatic Interaction”, Molecules, 24(17). 3056. 2019.
 
[21]  Basu, A., Feng, D., Planinic, P., Ebersole, J.L., Lyons, T.J. and Alexander, J.M, “Dietary Blueberry and Soluble Fiber Supplementation Reduces Risk of Gestational Diabetes in Women with Obesity in a Randomized Controlled Trial”, The Journal of Nutrition, 151(5).1128-1138. 2021.
 
[22]  Triffoni-Melo, A.T., Castro, M., Jordão A.A., Leandro-Merhi, V.A., Dick-DE-Paula, I, and Diez-Garcia, R.W, “High-fiber diet promotes metabolic, hormonal, and satiety effects in obese women on a short-term caloric restriction”, Arq Gastroenterol, 60(2):163-171. 2023.
 
[23]  Delannoy-Bruno, O., Desai, C., Raman, A.S., Chen, R.Y., Hibberd, M.C., Cheng, J., Han, N., Castillo, J.J., Couture, G., Lebrilla, C.B., Barve, R.A., Lombard, V., Henrissat, B., Leyn, S.A., Rodionov, D.A., Osterman, A.L., Hayashi, D.K., Meynier, A., Vinoy, S., Kirbach, K., Wilmot, T., Heath, A.C., Klein, S., Barratt, M.J. and Gordon, J.I, “Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans”, 595(7865). 91-95. 2021.
 
[24]  Carvalho, D.V., Silva, L.M.A., Alves Filho, E.G., Santos, F.A., Lima, R.P., Viana, A.F.S.C., Nunes, P.I.G., Fonseca, S.G.D.C., Melo, T.S., Viana, D.A., Gallão, M.I, and Brito, E.S, “Cashew apple fiber prevents high fat diet-induced obesity in mice: an NMR metabolomic evaluation” Food Funct. 10(3):1671-1683. 2019.
 
[25]  Goyal, R.K., Guo, Y and Mashimo, H, Advances in the physiology of gastric emptying”, Neurogastroenterol Motil. 31(4):e13546. 2019.
 
[26]  Gill, S., Chater, P.I., Wilcox, M.D., Pearson, J.P. and Brownlee, I.A, “The impact of dietary fibres on the physiological processes of the large intestine”, Bioactive Carbohydrates and Dietary Fibre, 16. 62–74. 2018.
 
[27]  Santoso, P., Maliza, R., Rahayu, R., Astrina, Y., Syukri, F. and Maharani, S, “Extracted yam bean (Pachyrhizus erosus (L.) Urb.) fiber counteracts adiposity, insulin resistance, and inflammation while modulating gut microbiota composition in mice fed with a high-fat diet”, Research in Pharmaceutical Sciences, 17(5). 558-571. 2022.
 
[28]  Yuan, J.Y.F., Smeele, R.J. M., Harington, K.D., van Loon, F.M., Wanders, A.J. and Venn, B.J, “The effects of functional fiber on postprandial glycemia, energy intake, satiety, palatability and gastrointestinal wellbeing: A randomized crossover trial”, Nutrition Journal, 13(1). 76. 2014.
 
[29]  Zhang, Y., Qi, J., Zeng, W., Huang, Y. and Yang, X, “Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment”, Food Chemistry, 311. 125873. 2020.
 
[30]  Martínez-Flores, H. E., Maya-Cortés, D.C., Figueroa-Cárdenas, J.D., Garnica-Romo, M.G., and Ponce-Saavedra, J, “Chemical composition and physicochemical properties of shiitake mushroom and high fiber products”, CYTA - Journal of Food, 7(1).7–14. 2008.
 
[31]  Norma Oficial Mexicana NOM-062-ZOO-1999 [online]. Ciudad de México: Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio; 2001 [citado 2023-04- 17]. Available in: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf.
 
[32]  Welch, M.G., Margolis, K.G., Li, Z. and Gershon, M.D, “Oxytocin regulates gastrointestinal motility, inflammation, macromolecular permeability, and mucosal maintenance in mice”, American Journal of Physiology-Gastrointestinal and Liver Physiology, 307(8). G848–G862. 2014.
 
[33]  Singh, A., Zapata, R.C., Pezeshki, A., Reidelberger, R.D. and Chelikani, P.K, “Inulin fiber dose-dependently modulates energy balance, glucose tolerance, gut microbiota, hormones and diet preference in high-fat-fed male rats”, Journal of Nutritional Biochemistry, 59. 142–152. 2018.
 
[34]  He, Y., Wang, B., Wen, L., Wang, F., Yu, H., Chen, D., Su, X. and Zhang, C, “Effects of dietary fiber on human health”, Food Science and Human Wellness, 11(1). 1–10. 2022.
 
[35]  Ahmed, J., Thomas, L. and Khashawi, R, “Dielectric, thermal, and rheological properties of inulin/water binary solutions in the selected concentration”, Journal of Food Process Engineering, 42 (2). 1–9. 2018.
 
[36]  Liu, S., Jia, M., Chen, J., Wan, H., Dong, R., Nie, S., Xie, M. and Yu, Q, “Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber”, Food Hydrocolloids, 93:284-292. 2019.
 
[37]  Jia, Y., Liu, Y., Feng, L., Sun, S, and Sun, G, “Role of Glucagon and Its Receptor in the Pathogenesis of Diabetes”, Front Endocrinol (Lausanne), 13:928016. 2022.
 
[38]  Holst, J.J., Gasbjerg, L.S. and Rosenkilde, M.M, “The Role of Incretins on Insulin Function and Glucose Homeostasis”, Endocrinology, 162(7):bqab065. 2021.
 
[39]  Rajesh, Y. and Sarkar, D, “Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer”, Int J Mol Sci, 22(4):2163. 2021.
 
[40]  Savage, D.B., Sewter, C.P., Klenk, E.S., Segal, D.G., Vidal-Puig, A., Considine, R.V. and O’Rahilly, S, “Resistin/Fizz3 expression in Relation to Obesity and Peroxisome Proliferator - Activated Receptor-γ Action in Humans”, Diabetes, 50(10). 2199–2202. 2001.
 
[41]  Zhai X., Ao, H., Liu, W., Zheng, J., Li, X. and Ren, D, “Physicochemical and structural properties of dietary fiber from Rosa roxburghii pomace by steam explosion”, Journal of Food Science and Technology, 59(6). 2381 – 2391. 2022.
 
[42]  Kurek, M. A., Karp, S., Wyrwisz, J. and Niu, Y, “Physicochemical properties of dietary fibers extracted from gluten-free sources: quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum)”, Food Hydrocolloids, 85. 321 – 330. 2018.
 
[43]  Iskandar, M.A., Bashir, Y.E., Abdul Khalil, H.P.S., Rahman, A.A. and Ismail, M, A., “Recent Progress in Modification Strategies of Nanocellulose-Based Aerogels for Oil Absorption Application”, Polymers, 14(5):849. 2022.
 
[44]  Afinjuomo, F., Abdella, S., Youssef, S.H., Song, Y. and Garg, S, “Inulin and its application in drug delivery”, Pharmaceuticals, 14(9).855. 2021.
 
[45]  Zhu, Y., Yue, S., Li, R., Qiu, S., Xu, Z., Wu, Y., Yao, J., Zuo, Y., Li, K. and Li, Y, “Prebiotics Inulin Metabolism by Lactic Acid Bacteria From Young Rabbits”, Frontiers in Veterinary Science, 8. 719927. 2021.
 
[46]  Akram, W., Garud, N. and Joshi, R, “Role of inulin as prebiotics on inflammatory bowel disease”, Drug Discoveries and Therapeutics, 13 (1). 1–8. 2019.
 
[47]  Ahmed, J., Thomas, L. and Khashawi, R, “Dielectric, thermal, and rheological properties of inulin/water binary solutions in the selected concentration”, Journal of Food Process Engineering, 42(2). 1–9. 2018.
 
[48]  Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H.R., Shakeel, A. and Niazi, S, “Inulin: Properties, health benefits and food applications”, Carbohydrate Polymers, 147. 444–454. 2016.
 
[49]  Dikeman, C.L. and Fahey, G.C, “Viscosity as related to dietary fiber: a review”, Critical Reviews in Food Science and Nutrition, 46(8). 649–663. 2006.
 
[50]  Michelin, M., Gomes, D.G., Romaní, A., Polizeli, M. de L.T.M. and Teixeira, J.A. “Nanocellulose production: Exploring the enzymatic route and residues of pulp and paper industry”, Molecules, 25 (15). 1–36. 2020.
 
[51]  Kurek, M. A., Karp, S., Wyrwisz, J. and Niu, Y, “Physicochemical properties of dietary fibers extracted from gluten-free sources: quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum)”, Food Hydrocolloids, 85. 321 – 330. 2018.
 
[52]  Zhang, H., Cao, X., Yin, M. and Wang, J, “Soluble dietary fiber from Qing Ke (highland barley) brewers spent grain could alter the intestinal cholesterol efflux in Caco-2 cells”, Journal of Functional Foods, 47.100–106. 2018.
 
[53]  Roszowska-Jarosz, M., Masiewicz, J., Kostrzewa, M., Kucharczyk, W., Żurowski, W., Kucińska-Lipka, J. and Przybyłek, P, “Mechanical properties of bio-composites based on epoxy resin and nanocellulose fibres”, Materials, 14(13). 10.3390/ma14133576. 2021.
 
[54]  Rostami, J., Mathew, A.P. and Edlund, U, “Zwitterionic acetylated cellulose nanofibrils”, Molecules, 24(17). 1–16. 2019.
 
[55]  Bhanja, A., Paikra, S.K., Sutar, P.P. and Mishra, M, “Characterization and identification of inulin from Pachyrhizus erosus and evaluation of its antioxidant and in-vitro prebiotic efficacy”, Journal of Food Science and Technology, 60(1). 328-339. 2022.
 
[56]  Li, M., He, B., Chen, Y. and Zhao, L, “Physicochemical Properties of Nanocellulose Isolated from Cotton Stalk Waste”, ACS Omega, 6(39). 25162-25169. 2021.
 
[57]  Roszowska-Jarosz, M., Masiewicz, J., Kostrzewa, M., Kucharczyk, W., Żurowski, W., Kucińska-Lipka, J. and Przybyłek, P, “Mechanical properties of bio-composites based on epoxy resin and nanocellulose fibres”, Materials, 14(13). 3576. 2021.
 
[58]  Huang, G., Liu, J., Jin, W., Wei, Z., Ho, C., Zhao, S., Zhang, K. and Huang, Q, “Formation of Nanocomplexes between Carboxymethyl Inulin and Bovine Serum Albumin via pH-Induced Electrostatic Interaction”, Molecules, 24 (17). 1–18. 2019.
 
[59]  Akram, W. and Garud, N, “Optimization of inulin production process parameters using response surface methodology”, Future Journal of Pharmaceutical Sciencee, 6:68. 2020.
 
[60]  Chikkerur, J., Samanta, A.K., Kolte, A.P., Dhali, A, and Roy, S, “Production of short chain fructo-oligosaccharides from inulin of chicory root using fungal endoinulinasa”, Applied Biochemistry and Biotechnology, 191:695-715. 2019.
 
[61]  Alzate-Arbelaez, A.F., Cortés, F.B, and Rojano, B.A, “Antioxidants from Hyeronima macrocarpa Berries Loaded Nanocellulose: Thermal and Antioxidant Stability”, Molecules, 27:6661. 2022.
 
[62]  Chutkan, R., Fahey, G., Wright, W.L. and McRorie, J, “Viscous versus nonviscous soluble fiber supplements: Mechanisms and evidence for fiber-specific health benefits”, Journal of the American Academy of Nurse Practitioners, 24(8). 476–87. 2012.
 
[63]  Jha, R., Foushe, J.M., Tiwari, U.P., Li, L, and Willing B.P, “Dietary Fiber and Intestinal Health of Monogastric Animals”, 6:48. 2019.
 
[64]  McRae, M.P, “Dietary Fiber Intake and Type 2 Diabetes Mellitus: An Umbrella Review of Meta-analyses”, Journal of Chiropractic Medicine, 17(1). 44–53. 2018.
 
[65]  Basu, A., Alman, A.C and Snell-Bergeon, J.K, “Dietary fiber intake and glycemic control: coronary artery calcification in type 1 diabetes (CACTI) study”, Nutr J. 18(1):23. 2019.
 
[66]  Aaseth, J., Ellefsen, S., Alehagen, U., Sundfør, T.M. and Alexander, J, “Diets and drugs for weight loss and health in obesity - An update”, Biomedicine & Pharmacotherapy, 140:1117892021. 2021.
 
[67]  Niero, M., Bartoli, G., De Colle, P., Scarcella, M, and Zanetti, M, “Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review”, Nutrients. 15(10):2365. 2023.
 
[68]  Zurbau, A., Noronha, J.C., Khan, T.A., Sievenpiper, J.L, and Wolever, T.M.S, “The effect of oat β-glucan on postprandial blood glucose and insulin responses: a systematic review and meta-analysis” Eur J Clin Nutr, 75(11):1540-1554. 2021.
 
[69]  Jane, M., McKay, J., Pal, S, “Effects of daily consumption of psyllium, oat bran and polyGlycopleX on obesity-related disease risk factors: A critical review”, Nutrition, 57:84-91. 2019.
 
[70]  Misiakiewicz-Has, K., Maciejewska-Markiewicz, D., Rzeszotek, S., Pilutin, A., Kolasa, A., Szumilas, P., Stachowska, E, and Wiszniewska, B, “The Obscure Effect of Tribulus terrestris Saponins Plus Inulin on Liver Morphology, Liver Fatty Acids, Plasma Glucose, and Lipid Profile in SD Rats with and without Induced Type 2 Diabetes Mellitus” Int J Mol Sci. 22(16):8680. 2021.
 
[71]  Frank, G.K.W., Shott, M.E, and DeGuzman, M.C, “The Neurobiology of Eating Disorders”, Child Adolesc Psychiatr Clin N Am, 28(4):629-640. 2019.
 
[72]  Hobden, M.R., Commane, D.M., Guérin-Deremaux, L., Wils, D., Thabuis, C., Martin-Morales, A., Wolfram, S., Dìaz, A., Collins, S., Morais, I., Rowland, I.R., Gibson, G.R, and Kennedy, O.B, “Impact of dietary supplementation with resistant dextrin (NUTRIOSE®) on satiety, glycaemia, and related endpoints, in healthy adults” Eur J Nutr, 60(8):4635-4643. 2021.
 
[73]  Emilien, C.H., Zhu, Y., Hsu, W.H., Williamson, P. and Hollis, J.H, “The effect of soluble fiber dextrin on postprandial appetite and subsequent food intake in healthy adults”, Nutrition, 47. 6–12. 2018.
 
[74]  van der Beek, C.M., Canfora, E.E., Kip, A.M., Gorissen, S.H.M., Olde, Damink, S.W.M., van Eijk, H.M., Holst, J.J., Blaak, E.E., Dejong, C.H.C and Lenaerts, K, “The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men”, Metabolism, 87:25-35. 2018.
 
[75]  Warrilow, A., Mellor, D., McKune, A, and Pumpa, K, “Dietary fat, fibre, satiation, and satiety-a systematic review of acute studies”, Eur J Clin Nutr, 73(3):333-344. 2019.
 
[76]  Ansari, P., Hannan, J.M.A., Seidel, V, and Abdel-Wahab, Y.H.A, “Polyphenol-Rich Leaf of Annona squamosa Stimulates Insulin Release from BRIN-BD11 Cells and Isolated Mouse Islets, Reduces (CH2O)n Digestion and Absorption, and Improves Glucose Tolerance and GLP-1 (7-36) Levels in High-Fat-Fed Rats”, Metabolites. 12(10):995. 2022.
 
[77]  Zhao, X., Wang, M., Wen, Z., Lu, Z., Cui, L., Fu, C., Xue, H., Liu, Y, and Zhang, Y, “GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects”, Front Endocrinol (Lausanne). 12:721135. 2021.
 
[78]  Karhunen, L.J., Juvonen, K.R., Flander, S.M., Liukkonen, K., Lähteenmäki, L., Siloaho, M., Laaksonen, D.E., Herzig, K., Uusitypa, M. and Poutanen, K.S, “A Psyllium Fiber-Enriched Meal Strongly Attenuates Postprandial Gastrointestinal Peptide Release in Healthy Young Adults”, The Journal of Nutrition, 140(4). 737–744. 2010.
 
[79]  Baldassano, S., Accardi, G., Aiello, A., Buscemi, S., Di Miceli, G., Galimberti, D., Candore, G., Ruisi, P., Caruso, C. and Vasto, S, “Fibres as functional foods and the effects on gut hormones: The example of β-glucans in a single arm pilot study”, Journal of Functional Foods, 47: 264–269. 2018.
 
[80]  Dannenberg, A.J., and Berger, N.A, Obesity, inflammation and cancer. Springer Link. 2013. https://link.springer.com/book/10.1007/978-1-4614-6819-6.
 
[81]  Belladelli, F., Montorsi, F, and Martini, A, “Metabolic syndrome, obesity and cancer risk”, Curr Opin Urol, 32(6):594-597. 2022.
 
[82]  Palou, M., Sánchez, J., García-Carrizo, F., Palou, A. and Picó, C, “Pectin supplementation in rats mitigates age-related impairment in insulin and leptin sensitivity independently of reducing food intake”, Molecular Nutrition and Food Research, 59(10). 2022–2033. 2015.
 
[83]  Abbasi, N.N., Purslow, P.P., Tosh, S.M. and Bakovic, M, “Oat β-glucan depresses SGLT1- and GLUT2 - mediated glucose transport in intestinal epithelial cells (IEC-6)”, Nutrition Research, 36 (6). 541–552. 2016.