[1] | Coutu JP, Lindemer ER, Konukoglu E, et al. Two distinct classes of degenerative change are independently linked to clinical progression in mild cognitive impairment. Neurobiol Aging, 2017, 54(1): 1-9. |
|
[2] | Arribas RL, Romero A, Egea J, et al. Modulation of serine/threonine phosphatases by melatonin: therapeutic approaches in neurodegenerative diseases. Br J Pharmacol, 2018, 175(16): 3220-3229. |
|
[3] | López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell, 2013, 153(6): 1194-1217. |
|
[4] | Sperka T, Wang J, Rudolph KL. DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol, 2012, 13(9): 579-590. |
|
[5] | Schmidt JC, Cech TR. Human telomerase: Biogenesis, trafficking, recruitment, and activation. Genes Dev, 2015, 29(11): 1095-1105. |
|
[6] | Zhou J, Mao B, Zhou Q, et al. Endoplasmic reticulum stress activates telomerase. Aging Cell, 2014, 13(1): 197-200. |
|
[7] | Rolyan H, Scheffold A, Heinrich A, et al. Telomere shortening reduces Alzheimer’s disease amyloid pathology in mice. Brain, 2011, 134(Pt 7): 2044-2056. |
|
[8] | Jaskelioff M, Muller FL, Paik JH, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 2011, 469(7328): 102-106. |
|
[9] | Lee J, Jo YS, Sung YH, et al. Telomerase deficiency affects normal brain functions in mice. Neurochem Res, 2010, 35(2): 211-218. |
|
[10] | Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035): 843-850. |
|
[11] | Park JI, Venteicher AS, Hong JY, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 2009, 460(7251): 66-72. |
|
[12] | Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med, 2012, 4(8): 691-704. |
|
[13] | Shen CY, Jiang JG, Yang L, et al. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol, 2017, 174(11): 1395-1425. |
|
[14] | Yu YJ, Zhou LM, Yang YJ, et al. Cycloastragenol: An exciting novel candidate for age-associated diseases. Exp Ther Med, 2018, 16(3): 2175-2182. |
|
[15] | Tsoukalas D, Fragkiadaki P, Oana DA, et al. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol Med Rep, 2019, 20(4): 3701-3708. |
|
[16] | Ma CY, Hu LM, Tao GJ, et al. An UPLC-MS-based metabolomics investigation on the anti-fatigue effect of salidroside in mice. J Pharm Biomed Anal, 2015, 105(1): 84-90. |
|
[17] | Vasileva LV, Saracheva KE, Ivanovska MV, et al. Antidepressant-like effect of salidroside and curcumin on the immunoreactivity of rats subjected to a chronic mild stress model. Food Chem Toxicol, 2018, 1219(3): 604-611. |
|
[18] | Wu DM, Han XR, Fan SH, et al. Salidroside protection against oxidative stress injury through the Wnt/β-Catenin signaling pathway in rats with Parkinson's disease. Cell Physiol Biochem, 2018, 46(5): 793-1806. |
|
[19] | Wang SH, He H, Chen L, et al. Protective effects of salidroside in the MPTP/MPP(+)-induced model of Parkinson's disease through ROS-NO-related mitochondrion pathway. Mol Neurobiol, 2015, 51(2): 718-728. |
|
[20] | Chen LY, Liu P, Feng X, et al. Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo. J Cell Mol Med, 2017, 21(12): 3178-3189. |
|
[21] | Zhong Z, Han J, Zhang J, et al. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des DevelTher, 2018, 12(5): 1479-1489. |
|
[22] | Zhuang W, Yue LF, Dang XF, et al. Rosenroot (rhodiola): potential applications in aging-related diseases. Aging Dis, 2019, 10(1): 134-146. |
|
[23] | Foster TC, Defazio RA, Bizon JL. Characterizing cognitive aging of spatial and contextual memory in animal models. Front Aging Neurosci, 2012, 4: 12. |
|
[24] | Gebre-Medhin S, Broberg K, Jonson T, et al. Telomeric associations correlate with telomere length reduction and clonal chromosome aberrations in giant cell tumor of bone. Cytogenet Genome Res, 2009, 124(2): 121-127. |
|
[25] | Yuan X, Xu D. Telomerase reverse transcriptase (TERT) in action: Cross-talking with epigenetics. Int J Mol Sci, 2019, 20(13): 3338-3353. |
|
[26] | Hoffmeyer K, Raggioli A, Rudloff S, et al. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science, 2012, 336(6088): 1549-1554. |
|
[27] | Zhang Y, Toh L, Lau P, et al. Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. J Biol Chem, 2012, 287(39): 32494-32511. |
|
[28] | Pestana A, Vinagre J, Sobrinho-Simões M, et al. TERT biology and function in cancer: Beyond immortalisation. J Mol Endocrinol, 2017, 58(2): R129-R146. |
|