World Journal of Organic Chemistry
ISSN (Print): 2372-2150 ISSN (Online): 2372-2169 Website: https://www.sciepub.com/journal/wjoc Editor-in-chief: Subrata Shaw
Open Access
Journal Browser
Go
World Journal of Organic Chemistry. 2023, 10(1), 4-19
DOI: 10.12691/wjoc-10-1-2
Open AccessArticle

Copper-Catalyzed Hydroamination of Terminal Alkynes by Combining N-fluorobenzenesulfonimide and H2O: Synthesis of β-amino Substituted Styrenes

Tony Wheellyam Pouambeka1, 2, , Hubert Makomo1, Ghislain Kende1 and Timoléon Andzi Barhé3

1Equipe de Chimie Organique et Analytique des Substances Bioactives, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, République du Congo BP 69

2Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

3Laboratoire de Recherche en Chimie Appliquée, Ecole Normale Superieure, Université Marien Ngouabi, Brazzaville, République du Congo BP 69

Pub. Date: November 27, 2023

Cite this paper:
Tony Wheellyam Pouambeka, Hubert Makomo, Ghislain Kende and Timoléon Andzi Barhé. Copper-Catalyzed Hydroamination of Terminal Alkynes by Combining N-fluorobenzenesulfonimide and H2O: Synthesis of β-amino Substituted Styrenes. World Journal of Organic Chemistry. 2023; 10(1):4-19. doi: 10.12691/wjoc-10-1-2

Abstract

By using the combining of N-fluorobenzenesulfonimide and H2O, we have realized the first example of high efficient and easy hydroamination of terminal alkynes. The reaction was catalyzed by copper and the corresponding β-amino substituted styrenes have been afforded in good to excellent yields. The transformation under simple mild conditions feature a broad substrate scope, atom economy, good functional group tolerance and the simple mechanism was proposed. The different products obtained were characterized using 1HNMR, 13CNMR and HRMS.

Keywords:
hydroamination β-amino substituted styrenes N-fluorobenzenesulfonimide (NFSI) Copper-Catalyzed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  LI, X., Yuan X., Hu J., et al. Radical Decarboxylative Carbon–Nitrogen Bond Formation. Molecules. 2023, 28(10): 4249.
 
[2]  Goh J., Ong S. K., Tan Y. S., Loh T. P. Catalyst-free C–N bond formation under biocompatible reaction conditions. Green Chemistry. 2022, 24(8): 3321-3325.
 
[3]  Bariwal J., Van der Eycken E. C–N bond forming cross-coupling reactions: an overview. Chem Soc Rev. 2013, 42(24): 9283-9303.
 
[4]  Zarnegar Z., Alizadeh R., Ahmadzadeh M., Safari J. C-N bond formation in alicyclic and heterocyclic compounds by amine-modified nanoclay. J. Mol. Struct. 2017, 1144, 58-65.
 
[5]  Zheng Y. N., Zheng H., Li T., Wei W. T. Recent Advances in Copper‐Catalyzed C− N Bond Formation Involving N‐Centered Radicals. Chem Sus Chem. 2021, 14(24): 5340-5358.
 
[6]  Ma D., Zhai S., Wang Y., Liu A., Chen C. Synthetic approaches for C-N bonds by TiO2 photocatalysis. Front. Chem. 2019, 7, 635.
 
[7]  McNichol C. P., DeCicco E. M., Canfield A. M., Carstairs D. P., Paradine S. M. (2023). Copper-Catalyzed Aerobic Aminooxygenation of Cinnamyl N-Alkoxycarbamates via Substrate-Promoted Catalyst Activation. ACS Catalysis. 2023, 13(10): 6568-6573.
 
[8]  Zhao J., Jiang M., Liu J. T. Transition metal-free aminofluorination of β, γ-unsaturated hydrazones: base-controlled regioselective synthesis of fluorinated dihydropyrazole and tetrahydropyridazine derivatives. Org. Chem. Front. 2018, 5(7): 1155-1159.
 
[9]  Nanda S. K., Mallik R. 1, 2-Difunctionalizations of alkynes entailing concomitant C–C and C–N bond-forming carboamination reactions. RSC advances. 2022, 12(10): 5847-5870.
 
[10]  Wu H., Shao C., Wu D., Jiang L., Yin H., Chen F. X. Atom-Economical Thiocyanation-Amination of Alkynes with N-Thiocyanato-Dibenzenesulfonimide. J. Org. Chem. 2021, 86(7): 5327-5335.
 
[11]  Qian S., Lazarus T. M., Nicewicz D. A. (2023). Enantioselective Amino-and Oxycyanation of Alkenes via Organic Photoredox and Copper Catalysis. J. Am. Chem. Soc. 2023, 145(33): 18247-18252.
 
[12]  Ye L. Palladium-catalyzed intramolecular aminoalkylation of unactivated alkenes for synthesis of nitrogen-containing heterocycles. HKU Theses Online. (HKUTO). 2015.
 
[13]  Muller T. E., Hultzsch K. C., Yus M., Foubelo F., Tada M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 2008, 108(9): 3795-3892.
 
[14]  Escorihuela J., Lledós A., Ujaque G. Anti-Markovnikov Intermolecular Hydroamination of Alkenes and Alkynes: A Mechanistic View. Chem. Rev. 2023, 123(15): 9139-9203.
 
[15]  Streiff S., Jérôme F. Hydroamination of non-activated alkenes with ammonia: a holy grail in catalysis. Chem. Soc. Rev. 2021, 50(3): 1512-1521.
 
[16]  Muller T. E., Hultzsch K. C., Yus M., Foubelo F., Tada M. (2008). Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 2008, 108(9): 3795-3892.
 
[17]  Huang L., Arndt M., Gooßen K., Heydt H., Goossen L. J. (2015). Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 2015, 115(7): 2596-2697.
 
[18]  Kozlov N. S., Dinaburskaya B., Rubina T. J. J. Gen. Chem. USSR. 1936, 6, 1341.
 
[19]  Erken C., Hindemith C., Weyhermüller T., Hölscher M., Werlé C., Leitner W. Hydroamination of aromatic alkynes to imines catalyzed by Pd (II)–anthraphos complexes. ACS omega. 2020, 5(15): 8912-8918.
 
[20]  Zheng G., Li Y., Han J., Xiong T., Zhang Q. (2015). Radical cascade reaction of alkynes with N-fluoroarylsulfonimides and alcohols. Nat. Commun. 2015, 6(1): 7011.
 
[21]  Li Y., Zhang Q. N-Fluorobenzenesulfonimide: an efficient nitrogen source for C–N bond formation. Synthesis. 2014, 159-174.
 
[22]  Xiong T., Li Y., Mao L., Zhang Q. Palladium-catalyzed allylic C–H amination of alkenes with N-fluorodibenzenesulfonimide: water plays an important role. Chem Commun.2012, 48(16): 2246-2248.
 
[23]  Liu Z., Liao P., Bi X. (2014). General silver-catalyzed hydroazidation of terminal alkynes by combining TMS-N3 and H2O: synthesis of vinyl azides. Org. let. 2014, 16(14): 3668-3671.