[1] | Mohsen, K.H., AL-Asady, K.K.G. and AL-abody, M.A.K. The effect of spraying from macro and micro nutrients trace elements as a solution on yield and its component of wheat (Triticum aestivum L.) under Basrah environmental conditions. Muthanna Journal of Agricultural Sciences. 2 (2). 1-11. 2014. |
|
[2] | Nknam B. Evaluation of yield and some morphological traits of wheat under drought stress. Indian J of Fund and Appl Lied. Life Sci, 4 (2). 2231-6345. 2014. |
|
[3] | Debiton, C. Identification des critères du grain de blé (Triticum aestivum L.) favorables à la production de bioéthanol par l‟étude d‟un ensemble de cultivars et par l’analyse protéomique de lignées isogéniques waxy. Thèse. Doct. Univ Blaise Pascal, 276p, 2010. |
|
[4] | Abecassis, J., Delenne, J.Y., Mabille, F., Sadoudi, A., Samson, M.F., Lullien-Pellerin V. Expérimentation et modélisation pour la compréhension des mécanismes de fractionnement des céréales. Innovations Agronomiques 19. 95-105. 2012. |
|
[5] | Macauley, H., 2015. Cereal Crops: Rice, Maize, Millet, Sorghum, Wheat An Action Plan for African Agricultural Transformation. United Nations Economic Commission for Africa, Background Paper, Pp. 21-23. |
|
[6] | FAO. Suivi de la sécurité alimentaire et la nutrition à l’appui du Programme de développement durable à l’horizon 2030: Bilan et perspectives. Rome, FAO. 24p. 2016. |
|
[7] | Shilliea, P.N., Egwua, M.J.B. and Bojab, N.M. Rethinking wheat importation in Cameroon: an estimation of likely benefits missed due to importation. Food & Agribusiness Management. 3(1). 12-19. 2022. |
|
[8] | Rajaram, S. and Hettel, G.P. Wheat Breeding at CIMMYT: Wheat special report No 29. Ciudad Obregon, Sonora, Mexico 21-25 March, 1994. |
|
[9] | Fink, J.R., Inda, A.V., Bavaresco, J., Barrón, V., Torrent, J. and Bayer, C. Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil & Tillage Research. 155. 62-68. 2016a. |
|
[10] | Holdford, I.C.R., Schweitzer, B.E. and Crocker, G.J. Long –term effects of lime on soil-phosphorus solubility and sorption in the height acidic soils. Australian Journal of Soil Research 32 (4). 795-803. 1994. |
|
[11] | Boukhalfa-Deraoui, N., Hanifi-Mekliche, L. and Mihoub, A. Fertilization practices can contribute to modify the properties of the soils, in particular salinity and the pH of soils. The main goal of this study is to demonstrate the impact of the physicochemical properties physicochemical properties Subject Category: Properties. Journal of Agriculture Research. 9 (3). 123-131. 2015. |
|
[12] | Nziguheba, G., Zingore, S., Kihara, J., Merckx, R., Njoroge, S., Otinga, A., Vandamme, E. and Vanlauwe, B. Phosphorus in smallholder farming systems of sub-Saharan Africa: Implications for agricultural intensification. Nutrient Cycling in Agroecosystems. 104(3). 321-340. 2016. |
|
[13] | Jenssen T.K. and Kongshaug G. Energy consumption and greenhouse gas emissions in fertilizer production. Proceeding, 509: 1-28. York, International Fertilizer Society. 2003. |
|
[14] | Cardoso Filho, J. A., Sobrinho, R. R. and Pascholati, S. F. Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. In Agriculturally Important Microbes for Sustainable Agriculture. pp. 129-164. Springer. 2017. |
|
[15] | Wang, B., and Qiu, Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 16(5). 299-363. 2006. |
|
[16] | Hamel, C. Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture. Agric. Ecosyst. Environ. 60. 197-210. 1996. |
|
[17] | Singh, R. and Adholeya, A. Diversity of AM (Arbuscular mycorrhizal) fungi in wheat agro-climatic regions of India. Virol Mycol. 2(116). 517-2161. 2013. |
|
[18] | Ardakani, M.R., Pietsch, G., Moghaddam, A., Raza, A. and Friedel, J.K. Response of root properties to tripartite symbiosis between lucerne (Medicago sativa L.), rhizobia and mycorrhiza under dry organic farming conditions. American Journal of Agricultural and Biological Science. 4(4). 266-277. 2009. |
|
[19] | Smith, S.E. and Read, D.J. Mycorrhizal Symbiosis, 3rd ed, Academic Press, London, UK. 800p. 2008. |
|
[20] | Smith, S. E. and Smith, F.A. Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annu. Rev. Plant. Biol. 62. 227-250. 2011. |
|
[21] | Aggarwal, A., Kadian, N., Tanwar, A. Yadav, A. and Gupta, K.K. Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. Appl. Nat. Sci. 3 (2). 340 -351. 2011. |
|
[22] | Lopez-Raez, J.A., Shirasu, K. and Foo, E. Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci. 22. 527-537. 2017. |
|
[23] | Kobae, Y., Ohmori, Y. Saito, C. Yano, K., Ohtomo, R. and Fujiwara, T. Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant Physiol. 171. 566-579. 2016. |
|
[24] | Balota, E.L., Machineski, O. and Scherer, A. Mycorrhizal effectiveness on physic nut as influenced by phosphate fertilization levels. Rev. Bras. Cienc. Solo 36 (1). 23-32. 2012. |
|
[25] | Lin, C., Wang, Y., Liu, M., et al., Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata). Sci. Rep. 10. 12260. 2020. |
|
[26] | Koske, R.E. and Gemma, J.N. A Modified Procedure for Staining Roots to Detect VA Mycorrhizas. Mycological Research. 92. 486-488. 1989. |
|
[27] | Vierheilig, H. and Piché, Y. A. Modified procedure for staining arbuscular mycorrhizal fungi in roots. Z. Pflanz. Bodenkd. 161. 601-602. 1998. |
|
[28] | Trouvelot, A., Kough, J.L. and Gianinazzi-Pearson, V. Estimation of vesicular arbuscular mycorrhizal infection levels. Research for methods having a functional significance. In Physiological and Genetical Aspects of Mycorrhizae: Aspects Physiologiques et Genetiques des Mycorhizes, Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, France, 1-5 July 1985; Institut National de le Recherche Agronomique: Paris, France. 1986. |
|
[29] | Wissuwa M., Gonzalez, D. and Watts-Williams, S. J. The contribution of plant traits and soil microbes to phosphorus uptake from low-phosphorus soil in upland rice varieties. Plant and Soil 448. 523-537. 2020. |
|
[30] | Chen, J., Guo, J., Yang, Z., Yang, J., Dong, H., Wang, H., Wang, Y. and Zhan, F. The Application of Fertilizer and AMF Promotes Growth and Reduces the Cadmium and Lead Contents of Ryegrass (Lolium multiflorum L.) in a Copper Mining Area. Phyton-International Journal of Experimental Botany, 92 (2). 472-485. 2023. |
|
[31] | Smith, S.E., Jakobsen, I., Grønlund, M. and Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156, 1050-1057. 2011. |
|
[32] | Lehmann, A., and Rillig, M. C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops: a meta-analysis. Soil Biol. Biochem. 81. 147-158. 2015. |
|
[33] | Ziane, H., Meddad-Hamza, A., Beddiar, A. and Gianinazzi, S. Effects of Arbuscular Mycorrhizal Fungi and Fertilization Levels on Industrial Tomato Growth and Production. Int. J. Agric. Biol. 19. 341-347. 2017. |
|
[34] | Fall, A.F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Badji, A., Ndiaye, A., Ndiaye, M., Kyakuwa, P., Anyoni, O.G., Kabaseke, C., Ronoh, A.K. and Ekwangu, J. Combined Effects of Indigenous Arbuscular Mycorrhizal Fungi (AMF) and NPK Fertilizer on Growth and Yields of Maize and Soil Nutrient Availability Sustainability 15. 2243. 2023. |
|
[35] | Peterson, R.L. and Massicotte, H.B. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces Canadian Journal of Botany. 88(8).1074-1088. 2004. |
|
[36] | Felföldi, Z. Vidican, R., Stoian, V., Roman, I.A., Sestras, A.F., Rusu, T. and Sestras, R.E. Arbuscular Mycorrhizal Fungi and Fertilization Influence Yield, Growth and Root Colonization of Different Tomato Genotype. Plants. 11. 1743. 2022. |
|
[37] | Zhang, X., Wang, L.; Ma, F., Yang, J. and Su, M. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). J. Sci. Food Agric. 97. 2919-2925. 2017. |
|
[38] | Liu, J., Zhang, J., Li, D., Xu, C. and Xiang, X. Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization. Microbiology Open. 9. e00920. 2019. |
|
[39] | Ercoli, L., Schuler, A., Arduini, I., and Pellegrino, E. Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant Soil. 419. 153-167. 2017. |
|
[40] | Zhang, S., Luo, P., Yang, J., Irfan, M., Dai, J., An, N., Li, N. and Han, X. Responses of Arbuscular Mycorrhizal Fungi Diversity and Community to 41-Year Rotation Fertilization in Brown Soil Region of Northeast China. Front. Microbiol. 12. 2941. 2021. |
|
[41] | Battini, F., Grønlund, M., Agnolucci, M., Giovannetti, M. and Jakobsen, I. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci. Rep. 7. 4686. 2017. |
|
[42] | Ojha, B.R. On-farm evaluation of yield and yield attributing traits of promising wheat genotypes at mid western hills of Nepal. Journal of Plant Breeding 7: 3-14. 2012. |
|